Back to Search
Start Over
Predicting future cancer burden in the United States by artificial neural networks
- Source :
- Future oncology (London, England). 17(2)
- Publication Year :
- 2020
-
Abstract
- Aims: To capture the complex relationships between risk factors and cancer incidences in the US and predict future cancer burden. Materials & methods: Two artificial neural network (ANN) algorithms were adopted: a multilayer feed-forward network (MLFFNN) and a nonlinear autoregressive network with eXogenous inputs (NARX). Data on the incidence of the four most common tumors (breast, colorectal, lung and prostate) from 1992 to 2016 (available from National Cancer Institute online datasets) were used for training and validation, and data until 2050 were predicted. Results: The rapid decreasing trend of prostate cancer incidence started in 2010 will continue until 2018–2019; it will then slow down and reach a plateau after 2050, with several differences among ethnicities. The incidence of breast cancer will reach a plateau in 2030, whereas colorectal cancer incidence will reach a minimum value of 35 per 100,000 in 2030. As for lung cancer, the incidence will decrease from 50 per 100,000 (2017) to 31 per 100,000 in 2030 and 26 per 100,000 in 2050. Conclusion: This up-to-date prediction of cancer burden in the US could be a crucial resource for planning and evaluation of cancer-control programs.
- Subjects :
- Cancer Research
Colorectal cancer
colorectal cancer
History, 21st Century
03 medical and health sciences
Prostate cancer
0302 clinical medicine
Breast cancer
breast cancer
Neoplasms
Medicine
Humans
Public Health Surveillance
030212 general & internal medicine
Lung cancer
artificial neural network
future tumor burden
lung cancer
prostate cancer
Nonlinear autoregressive exogenous model
Artificial neural network
business.industry
Incidence (epidemiology)
Incidence
Cancer
General Medicine
History, 20th Century
medicine.disease
United States
Oncology
030220 oncology & carcinogenesis
Neural Networks, Computer
business
Demography
Subjects
Details
- ISSN :
- 17448301
- Volume :
- 17
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Future oncology (London, England)
- Accession number :
- edsair.doi.dedup.....c425e34eb69a2dc96b8d38d806ca3d16