Back to Search Start Over

Boundary-aware Semi-supervised Deep Learning for Breast Ultrasound Computer-Aided Diagnosis

Authors :
Xuejun Gu
Mingli Chen
Erlei Zhang
Weiguo Lu
Stephen J. Seiler
Source :
EMBC
Publication Year :
2020

Abstract

Breast ultrasound (US) is an effective imaging modality for breast cancer diagnosis. US computer-aided diagnosis (CAD) systems have been developed for decades and have employed either conventional handcrafted features or modern automatic deep-learned features, the former relying on clinical experience and the latter demanding large datasets. In this paper, we developed a novel BASDL method that integrates clinical-approved breast lesion boundary characteristics (features) into a semi-supervised deep learning (SDL) to achieve accurate diagnosis with a small training dataset. Original breast US images are converted to boundary-oriented feature maps (BFMs) using a distance-transformation coupled with a Gaussian filter. Then, the converted BFMs are used as the input of SDL network, which is characterized as lesion classification guided unsupervised image reconstruction based on stacked convolutional auto-encode (SCAE). We compared the performance of BASDL with conventional SCAE method and SDL method that used the original images as inputs, as well as SCAE method that used BFMs as inputs. Experimental results on two breast US datasets show that BASDL ranked the best among the four networks, with classification accuracy around 92.00±2.38%, which indicated that BASDL could be promising for effective breast US lesion CAD using small datasets.

Details

ISSN :
26940604
Volume :
2019
Database :
OpenAIRE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Accession number :
edsair.doi.dedup.....c429bf700bced23b85cccb08d73a361e