Back to Search
Start Over
On the number of $$k$$-compositions $$n$$ satisfying certain coprimality conditions
- Source :
- Acta Mathematica Hungarica. 164:135-156
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- We generalize the asymptotic estimates by Bubboloni, Luca and Spiga (2012) on the number of $k$-compositions of $n$ satisfying some coprimality conditions. We substantially refine the error term concerning the number of $k$-compositions of $n$ with pairwise relatively prime summands. We use a different approach, based on properties of multiplicative arithmetic functions of $k$ variables and on an asymptotic formula for the restricted partition function.<br />Comment: revised
- Subjects :
- Partition function (quantum field theory)
Mathematics - Number Theory
Coprime integers
General Mathematics
010102 general mathematics
Multiplicative function
05A17, 11N37, 11P81
010103 numerical & computational mathematics
Term (logic)
01 natural sciences
Combinatorics
Mathematics - Combinatorics
Arithmetic function
Pairwise comparison
Asymptotic formula
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 15882632 and 02365294
- Volume :
- 164
- Database :
- OpenAIRE
- Journal :
- Acta Mathematica Hungarica
- Accession number :
- edsair.doi.dedup.....c4a552a3fe12e66e7c14eb521b48b46b