Back to Search Start Over

Improvement of a synthetic live bacterial therapeutic for phenylketonuria with biosensor-enabled enzyme engineering

Authors :
Lauren E Fitch
Vincent M. Isabella
Kristin J. Adolfsen
Munira Momin
Teodelinda Mirabella
Adam G Lawrence
James E. Spoonamore
Per Jr Greisen
Andres Abin-Fuentes
Isolde Callihan
Mary Castillo
Lauren Renaud
Carl J Weile
Catherine E Monahan
Lindong Weng
Jay H Konieczka
Source :
Nature Communications, Vol 12, Iss 1, Pp 1-13 (2021), Nature Communications
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

In phenylketonuria (PKU) patients, a genetic defect in the enzyme phenylalanine hydroxylase (PAH) leads to elevated systemic phenylalanine (Phe), which can result in severe neurological impairment. As a treatment for PKU, Escherichia coli Nissle (EcN) strain SYNB1618 was developed under Synlogic’s Synthetic Biotic™ platform to degrade Phe from within the gastrointestinal (GI) tract. This clinical-stage engineered strain expresses the Phe-metabolizing enzyme phenylalanine ammonia lyase (PAL), catalyzing the deamination of Phe to the non-toxic product trans-cinnamate (TCA). In the present work, we generate a more potent EcN-based PKU strain through optimization of whole cell PAL activity, using biosensor-based high-throughput screening of mutant PAL libraries. A lead enzyme candidate from this screen is used in the construction of SYNB1934, a chromosomally integrated strain containing the additional Phe-metabolizing and biosafety features found in SYNB1618. Head-to-head, SYNB1934 demonstrates an approximate two-fold increase in in vivo PAL activity compared to SYNB1618.<br />PKU patients have elevated phenylalanine levels which can result in neurological impairment. Here the authors utilize biosensor-based ultra-high-throughput screening to optimize PAL activity in a synthetic biotic platform for improved in vivo performance.

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....c4d852ca494f7c8b8506758e360ce645