Back to Search Start Over

Early Recognition of Handwritten Gestures based on Multi-classifier Reject Option

Authors :
Eric Anquetil
Zhaoxin Chen
Christian Viard-Gaudin
Harold Mouchère
Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)
Image Perception Interaction (IPI)
Laboratoire des Sciences du Numérique de Nantes (LS2N)
IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)
intuitive user interaction for document (IntuiDoc)
MEDIA ET INTERACTIONS (IRISA-D6)
Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)
CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
Institut National des Sciences Appliquées (INSA)
Image Perception Interaction (LS2N - équipe IPI)
Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Source :
14th IAPR International Conference on Document Analysis and Recognition (ICDAR2017), 14th IAPR International Conference on Document Analysis and Recognition (ICDAR2017), Nov 2017, Kyoto, Japan. ⟨10.1109/ICDAR.2017.43⟩, ICDAR
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

International audience; In this paper a multi-classifier method for early recognition of handwritten gesture is presented. Unlike the other works which study the early recognition problem related to the time, we propose to make the recognition according to the quantity of incremental drawing of handwritten gestures. We train a segment length based multi-classifier for the task of recognizing the handwritten touch gesture as early as possible. To deal with potential similar parts at the beginning of different gestures, we introduce a reject option to postpone the decision until ambiguity persists. We report results on two freely available datasets: MGSet and ILG. These results demonstrate the improvement we obtained by using the proposed reject option for the early recognition of handwritten gestures.

Details

Language :
English
Database :
OpenAIRE
Journal :
14th IAPR International Conference on Document Analysis and Recognition (ICDAR2017), 14th IAPR International Conference on Document Analysis and Recognition (ICDAR2017), Nov 2017, Kyoto, Japan. ⟨10.1109/ICDAR.2017.43⟩, ICDAR
Accession number :
edsair.doi.dedup.....c4e161b4b46e01907cbd6af31322e181
Full Text :
https://doi.org/10.1109/ICDAR.2017.43⟩