Back to Search Start Over

Impact of Organic Matter on Microbially-Mediated Reduction and Mobilization of Arsenic and Iron in Arsenic(V)-Bearing Ferrihydrite

Authors :
Ruben Kretzschmar
Laurel K. ThomasArrigo
Xiaolin Cai
Sylvain Bouchet
Yanshan Cui
Xu Fang
Source :
Environmental Science & Technology. 55:1319-1328
Publication Year :
2020
Publisher :
American Chemical Society (ACS), 2020.

Abstract

Under anoxic conditions, the interactions between As-bearing ferrihydrite (Fh) and As(V)-reducing bacteria are known to cause Fh transformations and As mobilization. However, the impact of different types of organic matter (OM) on microbial As/Fe transformation in As-bearing Fh-organic associations remains unclear. In our study, we therefore exposed arsenate-adsorbed ferrihydrite, ferrihydrite-PGA (polygalacturonic acid), and ferrihydrite-HA (humic acid) complexes to two typical Fe(III)- and As(V)-reducing bacteria, and followed the fate of Fe and As in the solid and aqueous phases. Results show that PGA and HA promoted the reductive dissolution of Fh, resulting in 0.7-1.6 and 0.8-1.9 times more As release than in the OM-free Fh, respectively. This was achieved by higher cell numbers in the presence of PGA, and through Fe-reduction via electron-shuttling facilitated by HA. Arsenic-XAS results showed that the solid-phase arsenite fraction in Fh-PGA and Fh-HA was 15-19% and 27-28% higher than in pure Fh, respectively. The solid-associated arsenite fraction likely increased because PGA promoted cell growth and As(V) reduction, while HA provided electron shuttling compounds for direct microbial As(V)-reduction. Collectively, our findings demonstrate that As speciation and partitioning during microbial reduction of Fh-organic associations are strongly influenced by PGA and HA, as well as the strains' abilities to utilize electron-shuttling compounds.

Details

ISSN :
15205851 and 0013936X
Volume :
55
Database :
OpenAIRE
Journal :
Environmental Science & Technology
Accession number :
edsair.doi.dedup.....c52b650b033e4b311dc96c4b53777a85
Full Text :
https://doi.org/10.1021/acs.est.0c05329