Back to Search
Start Over
Maximum Spectral Measures of Risk with Given Risk Factor Marginal Distributions
- Source :
- SSRN Electronic Journal.
- Publication Year :
- 2020
- Publisher :
- Elsevier BV, 2020.
-
Abstract
- We consider the problem of determining an upper bound for the value of a spectral risk measure of a loss that is a general nonlinear function of two factors whose marginal distributions are known but whose joint distribution is unknown. The factors may take values in complete separable metric spaces. We introduce the notion of Maximum Spectral Measure (MSM), as a worst-case spectral risk measure of the loss with respect to the dependence between the factors. The MSM admits a formulation as a solution to an optimization problem that has the same constraint set as the optimal transport problem but with a more general objective function. We present results analogous to the Kantorovich duality, and we investigate the continuity properties of the optimal value function and optimal solution set with respect to perturbation of the marginal distributions. Additionally, we provide an asymptotic result characterizing the limiting distribution of the optimal value function when the factor distributions are simulated from finite sample spaces. The special case of Expected Shortfall and the resulting Maximum Expected Shortfall is also examined. Funding: M. Ghossoub and D. Saunders acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada in the form of Discovery Grants [Grants 2018-03961 and 2017-04220, respectively].
- Subjects :
- 91G70, 91G60, 91G40, 62P05
General Mathematics
Solution set
Asymptotic distribution
Duality (optimization)
Management Science and Operations Research
Mathematical Finance (q-fin.MF)
Upper and lower bounds
Computer Science Applications
FOS: Economics and business
Expected shortfall
Spectral risk measure
Quantitative Finance - Mathematical Finance
Joint probability distribution
Risk Management (q-fin.RM)
Applied mathematics
Marginal distribution
Quantitative Finance - Risk Management
Mathematics
Subjects
Details
- ISSN :
- 15565068
- Database :
- OpenAIRE
- Journal :
- SSRN Electronic Journal
- Accession number :
- edsair.doi.dedup.....c54610d47c06a1e1acc7b5940bc7536a
- Full Text :
- https://doi.org/10.2139/ssrn.3720332