Back to Search Start Over

Maximum Spectral Measures of Risk with Given Risk Factor Marginal Distributions

Authors :
Mario Ghossoub
David Saunders
Jesse Hall
Source :
SSRN Electronic Journal.
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

We consider the problem of determining an upper bound for the value of a spectral risk measure of a loss that is a general nonlinear function of two factors whose marginal distributions are known but whose joint distribution is unknown. The factors may take values in complete separable metric spaces. We introduce the notion of Maximum Spectral Measure (MSM), as a worst-case spectral risk measure of the loss with respect to the dependence between the factors. The MSM admits a formulation as a solution to an optimization problem that has the same constraint set as the optimal transport problem but with a more general objective function. We present results analogous to the Kantorovich duality, and we investigate the continuity properties of the optimal value function and optimal solution set with respect to perturbation of the marginal distributions. Additionally, we provide an asymptotic result characterizing the limiting distribution of the optimal value function when the factor distributions are simulated from finite sample spaces. The special case of Expected Shortfall and the resulting Maximum Expected Shortfall is also examined. Funding: M. Ghossoub and D. Saunders acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada in the form of Discovery Grants [Grants 2018-03961 and 2017-04220, respectively].

Details

ISSN :
15565068
Database :
OpenAIRE
Journal :
SSRN Electronic Journal
Accession number :
edsair.doi.dedup.....c54610d47c06a1e1acc7b5940bc7536a
Full Text :
https://doi.org/10.2139/ssrn.3720332