Back to Search Start Over

Combination of connectivity and spectral features for motor-imagery BCI

Authors :
Cattai, Tiziana
Colonnese, Stefania
Marie-Constance, Corsi
Bassett, Danielle S.
Scarano, Gaetano
DE VICO FALLANI, Fabrizio
Algorithms, models and methods for images and signals of the human brain (ARAMIS)
Sorbonne Université (SU)-Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau = Paris Brain Institute (ICM)
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Institut du Cerveau = Paris Brain Institute (ICM)
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Institut National de la Santé et de la Recherche Médicale (INSERM)
Sorbonne Université (SU)
Dipartimento di Ingegneria Elettronica e delle Telecomunicazioni (DIET)
University of Naples Federico II = Università degli studi di Napoli Federico II
Department of Bioengineering [Philadelphia]
University of Pennsylvania
Department of Physics and Astronomy [Philadelphia]
Department of Psychiatry [Philadelphia]
Santa Fe Institute
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM)
Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP]
Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP]
Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM)
Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Università degli studi di Napoli Federico II
University of Pennsylvania [Philadelphia]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Source :
GRAZ BCI conference 2019, GRAZ BCI conference 2019, Sep 2019, Graz, Austria
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; In brain-computer interfaces (BCI), the detection of different mental states is a key element. In Motor Imagery (MI)-based BCIs, the considered features typically rely on the power spectral density (PSD) of brain signals, but alternative features can be explored looking for better performance. One possibility is the integration of functional connectivity (FC). These features quantify the interactions between different brain areas and they could represent a valuable tool to detect differences between two mental conditions. Here, we investigated the behavior of coherence-based FC features and PSD features, alone and in combination. For a better comparison, we characterized the network centrality of each brain area by computing the weighted node degrees from the estimated FC networks. Our findings show that in both alpha and beta frequency bands, and for almost all the subjects, the fusion of FC network indices and PSD features give better performance. This preliminary results open the way to the use for network-based approaches in BCIs.

Details

Language :
English
Database :
OpenAIRE
Journal :
GRAZ BCI conference 2019, GRAZ BCI conference 2019, Sep 2019, Graz, Austria
Accession number :
edsair.doi.dedup.....c58b35d99aed9d8e7626fe9ec5076cf4