Back to Search Start Over

Land Cover Classification with Gaussian Processes using spatio-spectro-temporal features

Authors :
Valentine Bellet
Mathieu Fauvel
Jordi Inglada
Centre d'études spatiales de la biosphère (CESBIO)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Centre National d'Études Spatiales [Toulouse] (CNES)
Centre National d’Etudes Spatiales (CNES)
ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019)
Bellet, Valentine
Artificial and Natural Intelligence Toulouse Institute - - ANITI2019 - ANR-19-P3IA-0004 - P3IA - VALID
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Source :
IEEE Transactions on Geoscience and Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing, 2023, ⟨10.1109/TGRS.2023.3234527⟩
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

In this article, we propose an approach based on Gaussian Processes (GP) for large scale land cover pixel-basedclassification with Sentinel-2 satellite image time-series (SITS). We used a sparse approximation of the posterior combined with variational inference to learn the GP’s parameters. We applied stochastic gradient descent and GPU computing to optimize our GP models on massive data sets. The proposed GP model can be trained with hundreds of thousands of samples, compared to few thousands for traditional GP methods. Moreover, we included the spatial information by adding the geographic coordinates into the GP’s covariance function to efficiently exploit the spatio-spectro-temporal structure of the SITS. We ran experiments with Sentinel-2 SITS of the full year 2018 over an area of 200 000 km 2 (about 2 billion pixels) in the south of France, which is representative of an operational setting. Adding the spatial information significantly improved the results in terms of classification accuracy. With spatial information, GP models have an overall accuracy of 79.8. They are more than three points above Random Forest (the method used for current operational systems) and more than one point above a multi-layer perceptron. Compared to a Transformer-based model (which provides state ofthe art results in the literature, but are not applied in operational systems), GP models are only one point below.

Details

Language :
English
ISSN :
01962892
Database :
OpenAIRE
Journal :
IEEE Transactions on Geoscience and Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing, 2023, ⟨10.1109/TGRS.2023.3234527⟩
Accession number :
edsair.doi.dedup.....c5e96ae81f374287cdf5253a30569bae