Back to Search
Start Over
Community-level natural selection modes: A quadratic framework to link multiple functional traits with competitive ability
- Source :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Publication Year :
- 2018
- Publisher :
- Wiley Blackwell Publishing, Inc, 2018.
-
Abstract
- Research linking functional traits to competitive ability of coexisting species has largely relied on rectilinear correlations, yielding inconsistent results. Based on concepts borrowed from natural selection theory, we propose that trait?competition relationships can generally correspond to three univariate selection modes: directional (a rectilinear relationship), stabilising (an n-shaped relationship), and disruptive (a u-shaped relationship). Moreover, correlational selection occurs when two traits interact in determining competitive ability and lead to an optimum trait combination (i.e., a bivariate nonlinear selection mode). We tested our ideas using two independent datasets, each one characterising a group of species according to (a) their competitive effect on a target species in a pot experiment and (b) species-level values of well-known functional traits extracted from existing databases. The first dataset comprised 10 annual plant species frequent in a summer-rainfall desert in Argentina, while the second consisted of 37 herbaceous species from cool temperate vegetation types in Canada. Both experiments had a replacement design where the identity of neighbours was manipulated holding total plant density in pots constant. We modelled the competitive ability of neighbours (i.e., the log inverse of target plant biomass) as a function of traits using normal multiple regression. Leaf dry matter content (LDMC) was consistently subjected to negative directional selection in both experiments as well as to stabilising selection among temperate species. Leaf size was subjected to stabilising selection among desert species while among temperate species, leaf size underwent correlational selection in combination with specific leaf area (SLA): selection on SLA was negative directional for large-leaved species, while it was slightly positive for small-leaved species. Synthesis. Multiple quadratic regression adds functional flexibility to trait-based community ecology while providing a standardised basis for comparison among traits and environments. Our analyses of two datasets from contrasting environmental conditions indicate (a) that leaf dry matter content can capture an important component of plant competitive ability not accounted for by widely used competitive traits, such as specific leaf area, leaf size, and plant height and (b) that optimum relationships (either univariate or bivariate) between competitive ability and plant traits may be more common than previously realised. Fil: Rolhauser, Andrés Guillermo. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Nordenstahl, Marisa. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Aguiar, Martin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Pucheta, Eduardo Raúl. Universidad Nacional de San Juan; Argentina
- Subjects :
- 0106 biological sciences
LEAF DRY MATTER CONTENT
Specific leaf area
SPECIFIC LEAF AREA
Plant Science
Biology
010603 evolutionary biology
01 natural sciences
purl.org/becyt/ford/1 [https]
CORRELATIONAL SELECTION
Statistics
COMMUNITY ASSEMBLY
Leaf size
PLANT–PLANT INTERACTIONS
Stabilizing selection
purl.org/becyt/ford/1.6 [https]
LEAF SIZE
Ecology, Evolution, Behavior and Systematics
Selection (genetic algorithm)
Natural selection
Ecology
Community
Directional selection
fungi
QUADRATIC REGRESSION
food and beverages
STABILISING SELECTION
PHENOTYPIC SELECTION
COMPETITION EXPERIMENT
Trait
010606 plant biology & botany
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Accession number :
- edsair.doi.dedup.....c60e968009d9b670087636ea9b72bf6b
- Full Text :
- https://doi.org/10.1111/1365-2745.13094