Back to Search Start Over

Structural insights into binding of STAC proteins to voltage-gated calcium channels

Authors :
Ching-Chieh Tung
Filip Van Petegem
Marta Campiglio
Siobhan M. Wong King Yuen
Bernhard E. Flucher
Source :
Proceedings of the National Academy of Sciences of the United States of America
Publication Year :
2017

Abstract

Significance Skeletal muscle contraction is a tightly orchestrated event that starts with the depolarization of the T-tubular membrane. At the center is a functional and mechanical coupling between two membrane proteins: L-type voltage-gated calcium channels, located in the plasma membrane, and ryanodine receptors, located in the membrane of the sarcoplasmic reticulum. How exactly these proteins associate has remained a mystery, but recent reports have highlighted a key role for the STAC3 adaptor protein in this process. Here, we provide structural snapshots of the three STAC isoforms and identify a cytosolic loop of two CaV isoforms as a functional interaction site. A mutation linked to Native American myopathy is at the interface and abolishes the interaction.<br />Excitation–contraction (EC) coupling in skeletal muscle requires functional and mechanical coupling between L-type voltage-gated calcium channels (CaV1.1) and the ryanodine receptor (RyR1). Recently, STAC3 was identified as an essential protein for EC coupling and is part of a group of three proteins that can bind and modulate L-type voltage-gated calcium channels. Here, we report crystal structures of tandem-SH3 domains of different STAC isoforms up to 1.2-Å resolution. These form a rigid interaction through a conserved interdomain interface. We identify the linker connecting transmembrane repeats II and III in two different CaV isoforms as a binding site for the SH3 domains and report a crystal structure of the complex with the STAC2 isoform. The interaction site includes the location for a disease variant in STAC3 that has been linked to Native American myopathy (NAM). Introducing the mutation does not cause misfolding of the SH3 domains, but abolishes the interaction. Disruption of the interaction via mutations in the II–III loop perturbs skeletal muscle EC coupling, but preserves the ability of STAC3 to slow down inactivation of CaV1.2.

Details

ISSN :
10916490
Volume :
114
Issue :
45
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Accession number :
edsair.doi.dedup.....c662f4245f96bd6f68c60fd91b3d1c3e