Back to Search
Start Over
Eigenvalues and constraints in mixture modeling: geometric and computational issues
- Source :
- UVaDOC. Repositorio Documental de la Universidad de Valladolid, instname
- Publication Year :
- 2018
-
Abstract
- This paper presents a review about the usage of eigenvalues restrictions for constrained parameter estimation in mixtures of elliptical distributions according to the likelihood approach. These restrictions serve a twofold purpose: to avoid convergence to degenerate solutions and to reduce the onset of non interesting (spurious) maximizers, related to complex likelihood surfaces. The paper shows how the constraints may play a key role in the theory of Euclidean data clustering. The aim here is to provide a reasoned review of the constraints and their applications, along the contributions of many authors, spanning the literature of the last thirty years.<br />Spanish Ministerio de Economía y Competitividad (grant MTM2017-86061-C2-1-P)<br />Junta de Castilla y León - Fondo Europeo de Desarrollo Regional (grant VA005P17 and VA002G18)
- Subjects :
- Statistics and Probability
Mathematical optimization
Eigenvalue
01 natural sciences
Eigenvalues
EM algorithm
Mixture model
Model-based clustering
Computer Science Applications1707 Computer Vision and Pattern Recognition
Applied Mathematics
010104 statistics & probability
0502 economics and business
Expectation–maximization algorithm
Convergence (routing)
Euclidean geometry
0101 mathematics
Spurious relationship
Cluster analysis
050205 econometrics
Mathematics
Estimation theory
05 social sciences
Constrained clustering
Computer Science Applications
SECS-S/01 - STATISTICA
Subjects
Details
- Language :
- Spanish; Castilian
- Database :
- OpenAIRE
- Journal :
- UVaDOC. Repositorio Documental de la Universidad de Valladolid, instname
- Accession number :
- edsair.doi.dedup.....c665bc058c1ec863dd481ce48245880c