Back to Search
Start Over
Estimation of activity coefficients for aqueous organic redox flow batteries: Theoretical basis and equations
- Source :
- iScience, 25 (9), iScience, iScience, 2022, 25 (9), pp.104901. ⟨10.1016/j.isci.2022.104901⟩
- Publication Year :
- 2022
- Publisher :
- Elsevier, 2022.
-
Abstract
- The field of aqueous organic redox flow batteries (AORFBs) has been developing fast in recent years, and many chemistries are starting to emerge as serious contenders for grid-scale storage. The industrial development of these systems would greatly benefit from accurate physics-based models, allowing to optimize battery operation and design. Many authors in the field of flow battery modeling have brought evidence that the dilute solution hypothesis (the assumption that aqueous electrolytes behave ideally) does not hold for these systems and that calculating cell voltage or chemical potentials through concentrations rather than activities, while serviceable, may become insufficient when greater accuracy is required. This article aims to provide the theoretical basis for calculating activity coefficients of aqueous organic electrolytes used in AORFBs to provide tools to predict the concentrated behavior of aqueous electrolytes, thereby improving the accuracy of physics-based models for flow batteries.<br />iScience, 25 (9)<br />ISSN:2589-0042
- Subjects :
- 621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnik
Chemistry
Computational chemistry
Multidisciplinary
Erneuerbare Batterie
Concentrated solution theory
Estimation of activity coefficients
Electrochemistry
[CHIM.MATE]Chemical Sciences/Material chemistry
Redox flow battery
Virial matrix
Electrochemical energy storage
Subjects
Details
- Language :
- English
- ISSN :
- 25890042
- Database :
- OpenAIRE
- Journal :
- iScience, 25 (9), iScience, iScience, 2022, 25 (9), pp.104901. ⟨10.1016/j.isci.2022.104901⟩
- Accession number :
- edsair.doi.dedup.....c66c011ea81aa46a4e94c8d4f0336ba8
- Full Text :
- https://doi.org/10.1016/j.isci.2022.104901⟩