Back to Search Start Over

Non-linear set-membership identification approach based on the Bayesian framework

Authors :
Sebastian Tornil-Sin
Joaquim Blesa
Vicenç Puig
Rosa M. Fernandez-Canti
Comisión Interministerial de Ciencia y Tecnología, CICYT (España)
Ministerio de Economía y Competitividad (España)
Ministerio de Educación, Cultura y Deporte (España)
European Commission
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Institut de Robòtica i Informàtica Industrial
Universitat Politècnica de Catalunya. BIOART - BIOsignal Analysis for Rehabilitation and Therapy
Universitat Politècnica de Catalunya. SIC - Sistemes Intel·ligents de Control
Universitat Politècnica de Catalunya. SAC - Sistemes Avançats de Control
Source :
Recercat. Dipósit de la Recerca de Catalunya, instname, Digital.CSIC. Repositorio Institucional del CSIC, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Publication Year :
2015
Publisher :
Institution of Engineering and Technology, 2015.

Abstract

This study deals with the problem of set-membership identification of non-linear-in-the-parameters models. To solve this problem, this study illustrates how the Bayesian approach can be used to determine the feasible parameter set (FPS) by assuming uniform distributed estimation error and flat model prior probability distributions. The key point of the methodology is the interval evaluation of the likelihood function and the result is a set of boxes with associated credibility indices. For each box, the credibility index is in the interval (0, 1] and gives information about the amount of consistent models inside the box. The union of the boxes with credibility value equal to one provides an inner approximation of the FPS, whereas the union of all boxes provides an outer estimation. The boxes with credibility value smaller than one are located around the boundary of the FPS and their credibility index can be used to iteratively refine the inner and outer approximations up to a desired precision. The main issues and performance of the developed algorithms are discussed and illustrated by means of examples.<br />This work has been partially grant-funded by CICYT SHERECS DPI-2011-26243 and CICYT ECOCIS (Ref.DPI2013-48243-C2-1-R) DPI-2009-13744 of the Spanish Ministry of Education and by i-Sense grant FP7-ICT-2009-6-270428 of the European Commission.

Details

Language :
English
Database :
OpenAIRE
Journal :
Recercat. Dipósit de la Recerca de Catalunya, instname, Digital.CSIC. Repositorio Institucional del CSIC, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Accession number :
edsair.doi.dedup.....c6e84a54a5752e2054728b71e7d8a382