Back to Search Start Over

Full-State Controls of Terahertz Waves Using Tensor Coding Metasurfaces

Authors :
Xiao Yang Zhou
Shuo Liu
Yan Yang
Lei Zhang
Jiaguang Han
Quanlong Yang
Quan Xu
Tie Jun Cui
Jianqiang Gu
Weili Zhang
Qiang Cheng
Hao Chi Zhang
Source :
ACS Applied Materials & Interfaces. 9:21503-21514
Publication Year :
2017
Publisher :
American Chemical Society (ACS), 2017.

Abstract

Coding metasurfaces allow us to study metamaterials from a fully digital perspective, enabling many exotic functionalities, such as anomalous reflections, broadband diffusions, and polarization conversion. Here, we propose a tensor coding metasurface at terahertz (THz) frequency that could take full-state controls of an electromagnetic wave in terms of its polarization state, phase and amplitude distributions, and wave-vector mode. Owing to the off-diagonal elements that dominant in the reflection matrix, each coding particle could reflect the normally incident wave to its cross-polarization with controllable phases, resulting in different coding digits. A 3-bit tensor coding metasurface with three coding sequences is taken as an example to show its full-state controls in reflecting a normally incident THz beam to anomalous directions with cross-polarizations and making a spatially propagating wave (PW) to surface wave (SW) conversion at the THz frequency. We show that the proposed PW-SW convertor based on the tensor coding metasurface supports both x- and y-polarized normal incidences, producing cross-polarized transverse-magnetic and transverse-electric modes of THz SWs, respectively.

Details

ISSN :
19448252 and 19448244
Volume :
9
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces
Accession number :
edsair.doi.dedup.....c6f05f5072f784faaf5dbe4b67809c01