Back to Search Start Over

Asymmetric Open-Closed Dimer Mechanism of Polyhydroxyalkanoate Synthase PhaC

Authors :
Toshio Hakoshima
Kumar Sudesh
Tomoyuki Mori
Hua Tiang Tan
Min Fey Chek
Sun-Yong Kim
Source :
iScience, iScience, Vol 23, Iss 5, Pp-(2020)
Publication Year :
2020

Abstract

Summary Biodegradable polyester polyhydroxyalkanoate (PHA) is a promising bioplastic material for industrial use as a replacement for petroleum-based plastics. PHA synthase PhaC forms an active dimer to polymerize acyl moieties from the substrate acyl-coenzyme A (CoA) into PHA polymers. Here we present the crystal structure of the catalytic domain of PhaC from Chromobacterium sp. USM2, bound to CoA. The structure reveals an asymmetric dimer, in which one protomer adopts an open conformation bound to CoA, whereas the other adopts a closed conformation in a CoA-free form. The open conformation is stabilized by the asymmetric dimerization and enables PhaC to accommodate CoA and also to create the product egress path. The bound CoA molecule has its β-mercaptoethanolamine moiety extended into the active site with the terminal SH group close to active center Cys291, enabling formation of the reaction intermediate by acylation of Cys291.<br />Graphical Abstract<br />Highlights • Crystal structure of PhaCCs-CAT bound to coenzyme A • A unique asymmetric open-closed dimer • Restructuring of the CAP subdomain provides a cleft toward the active site • The cleft enables the substrate entry and the product egress<br />Polymer Chemistry; Biocatalysis; Structural Biology

Details

ISSN :
25890042
Volume :
23
Issue :
5
Database :
OpenAIRE
Journal :
iScience
Accession number :
edsair.doi.dedup.....c6f9d3f2301d42e240b015a6f80137f3