Back to Search Start Over

Brain and lesion segmentation in multiple sclerosis using fully convolutional neural networks: A large-scale study

Authors :
Xiaojun Sun
William J. Allen
Sushmita Datta
Ponnada A. Narayana
Refaat E. Gabr
Jerry S Wolinsky
Melvin Robinson
Sheeba J. Sujit
Fred D. Lublin
Ivan Coronado
Source :
Mult Scler
Publication Year :
2019

Abstract

Objective: To investigate the performance of deep learning (DL) based on fully convolutional neural network (FCNN) in segmenting brain tissues in a large cohort of multiple sclerosis (MS) patients. Methods: We developed a FCNN model to segment brain tissues, including T2-hyperintense MS lesions. The training, validation, and testing of FCNN were based on ~1000 magnetic resonance imaging (MRI) datasets acquired on relapsing–remitting MS patients, as a part of a phase 3 randomized clinical trial. Multimodal MRI data (dual-echo, FLAIR, and T1-weighted images) served as input to the network. Expert validated segmentation was used as the target for training the FCNN. We cross-validated our results using the leave-one-center-out approach. Results: We observed a high average (95% confidence limits) Dice similarity coefficient for all the segmented tissues: 0.95 (0.92–0.98) for white matter, 0.96 (0.93–0.98) for gray matter, 0.99 (0.98–0.99) for cerebrospinal fluid, and 0.82 (0.63–1.0) for T2 lesions. High correlations between the DL segmented tissue volumes and ground truth were observed ( R2 > 0.92 for all tissues). The cross validation showed consistent results across the centers for all tissues. Conclusion: The results from this large-scale study suggest that deep FCNN can automatically segment MS brain tissues, including lesions, with high accuracy.

Details

ISSN :
14770970
Volume :
26
Issue :
10
Database :
OpenAIRE
Journal :
Multiple sclerosis (Houndmills, Basingstoke, England)
Accession number :
edsair.doi.dedup.....c6fe7e7a1e6317c7cbcd2fe3c0145fff