Back to Search Start Over

Deep Multilayer Perceptron for Knowledge Extraction: Understanding the Gardon de Mialet Flash Floods Modeling

Authors :
Guillaume Artigue
Anne Johannet
Séverin Pistre
Bob E. Saint Fleur
Eau, Ressources, Territoires (ERT - IMT Mines Alès)
Laboratoire de Génie de l'Environnement Industriel et des Risques Industriels et Naturels (LGEI)
IMT - MINES ALES (IMT - MINES ALES)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-IMT - MINES ALES (IMT - MINES ALES)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Hydrosciences Montpellier (HSM)
Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Theory and Applications of Time Series Analysis-Selected Contributions from ITISE 2019, Theory and Applications of Time Series Analysis-Selected Contributions from ITISE 2019, pp.333-348, 2020, 978-3-030-56219-9. ⟨10.1007/978-3-030-56219-9_22⟩, Contributions to Statistics ISBN: 9783030562182, Theory and Applications of Time Series Analysis-Selected Contributions from ITISE 2019, Springer International Publishing, pp.333-348, 2020, Contributions to Statistics, 978-3-030-56219-9. ⟨10.1007/978-3-030-56219-9_22⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Issu de : ITISE 2019 - International Conference on Time Series and Forecasting, Granada, Spain, 25-27 September 2019; International audience; Flash floods frequently hit Southern France and cause heavy damages and fatalities. To enhance persons and goods safety, official flood forecasting services in France need accurate information and efficient models to optimize their decisions and policy in crisis management. Their forecasting is a serious challenge as heavy rainfalls that cause such floods are very heterogeneous in time and space. Such phenomena are typically nonlinear and more complex than classical flood events. This analysis had led to consider complementary alternatives to enhance the management of such situations. For decades, artificial neural networks have been proved very efficient to model nonlinear phenomena, particularly rainfall-discharge relations in various types of basins. They are applied in this study with two main goals: first, modeling flash floods on the Gardon de Mialet basin (Southern France); second, extract internal information from the model by using the KnoX: knowledge extraction method to provide new ways to improve models. The first analysis shows that the kind of nonlinear predictor strongly influences the representation of information, e.g., the main influent variable (rainfall) is more important in the recurrent and static models than in the feed-forward one. For understanding “long-term” flash floods genesis, recurrent and static models appear thus as better candidates, despite their lower performance. Besides, the distribution of weights linking the exogenous variables to the first layer of neurons is consistent with the physical considerations about spatial distribution of rainfall and response time of the hydrological system.

Details

Language :
English
ISBN :
978-3-030-56219-9
978-3-030-56218-2
ISBNs :
9783030562199 and 9783030562182
Database :
OpenAIRE
Journal :
Theory and Applications of Time Series Analysis-Selected Contributions from ITISE 2019, Theory and Applications of Time Series Analysis-Selected Contributions from ITISE 2019, pp.333-348, 2020, 978-3-030-56219-9. ⟨10.1007/978-3-030-56219-9_22⟩, Contributions to Statistics ISBN: 9783030562182, Theory and Applications of Time Series Analysis-Selected Contributions from ITISE 2019, Springer International Publishing, pp.333-348, 2020, Contributions to Statistics, 978-3-030-56219-9. ⟨10.1007/978-3-030-56219-9_22⟩
Accession number :
edsair.doi.dedup.....c732fbc6f3d8ee3e9edb9ad953f81f35
Full Text :
https://doi.org/10.1007/978-3-030-56219-9_22⟩