Back to Search
Start Over
Temperature dependent ultrasonic characterization of biological media
- Source :
- The Journal of the Acoustical Society of America. 130:2203-2211
- Publication Year :
- 2011
- Publisher :
- Acoustical Society of America (ASA), 2011.
-
Abstract
- Quantitative ultrasound (QUS) is an imaging technique that can be used to quantify tissue microstructure giving rise to scattered ultrasound. Other ultrasonic properties, e.g., sound speed and attenuation, of tissues have been estimated versus temperature elevation and found to have a dependence with temperature. Therefore, it is hypothesized that QUS parameters may be sensitive to changes in tissue microstructure due to temperature elevation. Ultrasonic backscatter experiments were performed on tissue-mimicking phantoms and freshly excised rabbit and beef liver samples. The phantoms were made of agar and contained either mouse mammary carcinoma cells (4T1) or chinese hamster ovary cells (CHO) as scatterers. All scatterers were uniformly distributed spatially at random throughout the phantoms. All the samples were scanned using a 20-MHz single-element fâ3 transducer. Quantitative ultrasound parameters were estimated from the samples versus increases in temperature from 37 °C to 50 °C in 1 °C increments. Two QUS parameters were estimated from the backscatter coefficient [effective scatterer diameter (ESD) and effective acoustic concentration (EAC)] using a spherical Gaussian scattering model. Significant increases in ESD and decreases in EAC of 20%â40% were observed in the samples over the range of temperatures examined. The results of this study indicate that QUS parameters are sensitive to changes in temperature.
- Subjects :
- Male
Time Factors
Materials science
Acoustics and Ultrasonics
Backscatter
Bioacoustics
Transducers
CHO Cells
Models, Biological
Mice
Motion
Cricetulus
Optics
Arts and Humanities (miscellaneous)
Cell Line, Tumor
Cricetinae
Speed of sound
Animals
Scattering, Radiation
Ultrasonics
Ultrasonography
Phantoms, Imaging
business.industry
Attenuation
Ultrasound
Temperature
Microstructure
Agar
Sound
Transducer
Liver
Bioacoustics [80]
Cattle
Female
Ultrasonic sensor
Rabbits
business
Biomedical engineering
Subjects
Details
- ISSN :
- 00014966
- Volume :
- 130
- Database :
- OpenAIRE
- Journal :
- The Journal of the Acoustical Society of America
- Accession number :
- edsair.doi.dedup.....c734f84ea02819c709b1868bed5781a8
- Full Text :
- https://doi.org/10.1121/1.3626162