Back to Search Start Over

Thermodynamics of thermal denaturation of ribonuclease A and cytochrome c in the presence of 1,1,1,3,3,3-hexafluoro-2-propanol

Authors :
Ranjana
Nand Kishore
Source :
IndraStra Global.
Publication Year :
2001
Publisher :
ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD, 2001.

Abstract

The thermal denaturation of ribonuclease A and cytochrome c has been studied by differential scanning calorimetry (d.s.c.) and u.v.-visible spectrophotometry in the presence of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) at pH = 5.5 and pH = 4.0, respectively. The quantitative thermodynamic parameters accompanying the thermal transitions from native to denatured state have been evaluated. The results of the reversible thermal denaturations have been fitted with a two-state native-to-denatured mechanism. A comparison has been made of the relative effect of HFIP on the thermal stability of ribonuclease A and cytochrome c. It has been observed that the denaturation capacity of HFIP tends more towards cytochrome c compared with ribonuclease A. The results have been explained on the basis of a fine balance between the preferential exclusion and binding that take place during the course of the denaturation reaction and the structuring of water around the groups of the protein exposed upon denaturation. Using the thermodynamic data obtained from calorimetric and spectroscopic measurements, we have calculated the changes in preferential solvation of ribonuclease A and cytochrome c upon heat denaturation. It is observed that the preferential solvation of these two proteins is specific, indicating that the solvation mechanism is not the same for them.

Details

Language :
English
ISSN :
23813652
Database :
OpenAIRE
Journal :
IndraStra Global
Accession number :
edsair.doi.dedup.....c739299a4fd81ccbc4dc8fcf195f4ecb