Back to Search
Start Over
Soliton-like structures in the spectrum and the corresponding eigenstates morphology for the quantum desymmetrized Sinai billiard
- Source :
- Chaos: An Interdisciplinary Journal of Nonlinear Science. 31:113122
- Publication Year :
- 2021
- Publisher :
- AIP Publishing, 2021.
-
Abstract
- By continuously varying certain geometric parameters γ of the totally desymmetrized quantum Sinai billiard, we study the formation of the so-called soliton-like structures in the spectra of the resulting family of systems. We present a detailed characterization of the eigenstate ψn morphologies along such structures. Usually, scarring and bouncing ball mode states are expected to fully explain the solitons. However, we show that they do not exhaust all the possibilities. States with strong resemblance to very particular solutions of the associated integrable case ( 45°– 45° right triangle) also account for the ψn’s. We argue that for the emergence of the solitons, in fact, there must be an interplay between the spatial localization properties of the soliton-related ψn’s and the rescaling properties of the billiards with γ. This is illustrated, e.g., by comparing the behavior of the eigenwavelengths along the solitons and the billiard size dependence on γ. Considerations on how these findings could extend to other type of billiards are also briefly addressed.
- Subjects :
- Physics
Integrable system
Applied Mathematics
Spectrum (functional analysis)
General Physics and Astronomy
Statistical and Nonlinear Physics
Nonlinear Sciences::Chaotic Dynamics
Classical mechanics
Soliton
Dynamical billiards
Quantum
Bouncing ball dynamics
Mathematical Physics
Right triangle
Eigenvalues and eigenvectors
Subjects
Details
- ISSN :
- 10897682 and 10541500
- Volume :
- 31
- Database :
- OpenAIRE
- Journal :
- Chaos: An Interdisciplinary Journal of Nonlinear Science
- Accession number :
- edsair.doi.dedup.....c777357fdbc7531b31fefc6670c77cda
- Full Text :
- https://doi.org/10.1063/5.0063628