Back to Search Start Over

Soliton-like structures in the spectrum and the corresponding eigenstates morphology for the quantum desymmetrized Sinai billiard

Authors :
A. L. Azevedo
M. R. Sales
F. Teston
M. G. E. da Luz
F. M. Zanetti
Source :
Chaos: An Interdisciplinary Journal of Nonlinear Science. 31:113122
Publication Year :
2021
Publisher :
AIP Publishing, 2021.

Abstract

By continuously varying certain geometric parameters γ of the totally desymmetrized quantum Sinai billiard, we study the formation of the so-called soliton-like structures in the spectra of the resulting family of systems. We present a detailed characterization of the eigenstate ψn morphologies along such structures. Usually, scarring and bouncing ball mode states are expected to fully explain the solitons. However, we show that they do not exhaust all the possibilities. States with strong resemblance to very particular solutions of the associated integrable case ( 45°– 45° right triangle) also account for the ψn’s. We argue that for the emergence of the solitons, in fact, there must be an interplay between the spatial localization properties of the soliton-related ψn’s and the rescaling properties of the billiards with γ. This is illustrated, e.g., by comparing the behavior of the eigenwavelengths along the solitons and the billiard size dependence on γ. Considerations on how these findings could extend to other type of billiards are also briefly addressed.

Details

ISSN :
10897682 and 10541500
Volume :
31
Database :
OpenAIRE
Journal :
Chaos: An Interdisciplinary Journal of Nonlinear Science
Accession number :
edsair.doi.dedup.....c777357fdbc7531b31fefc6670c77cda
Full Text :
https://doi.org/10.1063/5.0063628