Back to Search Start Over

New Insights on the Influence of Organic Co-Contaminants on the Aquatic Toxicology of Carbon Nanomaterials

Authors :
Phil Vincent
Damià Barceló
Marinella Farré
Mar Olmos
Josep Sanchís
Source :
Environmental Science & Technology. 50:961-969
Publication Year :
2015
Publisher :
American Chemical Society (ACS), 2015.

Abstract

At present, there is a lack of understanding of the combined ecotoxicity of carbon-based nanomaterials and co-contaminants. In this paper, we report on the toxicity of three carbon nanomaterials (fullerene-soot, multiwall carbon nanotubes, and graphene). Two standardized toxicity bioassays, the immobilization of the invertebrate Daphnia magna and the bioluminescence inhibition of the marine bacteria Vibrio fischeri, have been used. Synergistic and antagonistic effects of binary mixtures composed of fullerene soot and organic co-contaminants as malathion, glyphosate, diuron, triclosan, and nonylphenol were assessed. The isobologram method was used to evaluate the concentrations producing an effect, in comparison to those effects expected by a simple additive approach. In this study, antagonism was the predominant effect. However, synergism was also observed as in the case of D. magna exposed to mixtures of malathion and fullerene soot. D. magna was shown to be the most sensitive assay when carbon nanomaterials were present. Toxicity to D. magna was as follows: fullerene soot > multiwall carbon nanotubes > graphene. These results were proportional to the size of aggregates, smaller aggregates being the most toxic. The vector function of nanomaterials aggregates and the unexpected release inside living organisms was proven for malathion. These results highlight new insights on the risks associated with the release of carbon nanomaterials into the environment.

Details

ISSN :
15205851 and 0013936X
Volume :
50
Database :
OpenAIRE
Journal :
Environmental Science & Technology
Accession number :
edsair.doi.dedup.....c7993ab4073f0a4db75f38dec37a4e72
Full Text :
https://doi.org/10.1021/acs.est.5b03966