Back to Search Start Over

(De)Lithiation and Strain Mechanism in Crystalline Ge Nanoparticles

Authors :
Diana Zapata Dominguez
Christopher L. Berhaut
Anton Buzlukov
Michel Bardet
Praveen Kumar
Pierre-Henri Jouneau
Antoine Desrues
Adrien Soloy
Cédric Haon
Nathalie Herlin-Boime
Samuel Tardif
Sandrine Lyonnard
Stéphanie Pouget
Modélisation et Exploration des Matériaux (MEM)
Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
Service Général des Rayons X (SGX )
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES)
Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA )
Laboratoire Edifices Nanométriques (LEDNA)
Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685)
Institut Rayonnement Matière de Saclay (IRAMIS)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Département de l'électricité et de l'hydrogène dans les transports (DEHT)
Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN)
Institut National de L'Energie Solaire (INES)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de L'Energie Solaire (INES)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
Nanostructures et Rayonnement Synchrotron (NRS )
'Nanocharacterization Platform (PFNC)' at Minatec, CEA-Grenoble (France)
SiBali, a CEA project
ANR-16-CE05-0028,Helios,Batteries Li-Ion à haute densité d'énergie à base de nanoparticules cœur@coquille silicium carbone(2016)
European Project: 685716,H2020,H2020-NMP-2015-two-stage,SINTBAT(2016)
Source :
ACS Nano, ACS Nano, 2022, 16 (6), pp.9819-9829. ⟨10.1021/acsnano.2c03839⟩
Publication Year :
2022
Publisher :
American Chemical Society (ACS), 2022.

Abstract

International audience; Germanium is a promising active material for high energy density anodes in Li-ion batteries thanks to its good Li-ion conduction and mechanical properties. However, a deep understanding of the (de)lithiation mechanism of Ge requires advanced characterizations to correlate structural and chemical evolution during charge and discharge. Here we report a combined operando X-ray diffraction (XRD) and ex situ 7Li solid-state NMR investigation performed on crystalline germanium nanoparticles (c-Ge Nps) based anodes during partial and complete cycling at C/10 versus Li metal. High-resolution XRD data, acquired along three successive partial cycles, revealed the formation process of crystalline core–amorphous shell particles and their associated strain behavior, demonstrating the reversibility of the c-Ge lattice strain, unlike what is observed in the crystalline silicon nanoparticles. Moreover, the crystalline and amorphous lithiated phases formed during a complete lithiation cycle are identified. Amorphous Li7Ge3 and Li7Ge2 are formed successively, followed by the appearance of crystalline Li15Ge4 (c-Li15Ge4) at the end of lithiation. These results highlight the enhanced mechanical properties of germanium compared to silicon, which can mitigate pulverization and increase structural stability, in the perspective for developing high-performance anodes.

Details

ISSN :
1936086X and 19360851
Volume :
16
Database :
OpenAIRE
Journal :
ACS Nano
Accession number :
edsair.doi.dedup.....c79fc9f167b6e66f58ef83c1c44e2dff