Back to Search Start Over

OASIS/CREB3L1 is a factor that responds to nuclear envelope stress

Authors :
Kazunori Imaizumi
Rie Asada
Atsushi Saito
Yasunao Kamikawa
Satoshi Tashiro
Masayuki Kaneko
Yasunori Horikoshi
Koji Matsuhisa
Source :
Cell Death Discovery, Vol 7, Iss 1, Pp 1-12 (2021), Cell Death Discovery
Publication Year :
2021
Publisher :
Nature Publishing Group, 2021.

Abstract

The nuclear envelope (NE) safeguards the genome and is pivotal for regulating genome activity as the structural scaffold of higher-order chromatin organization. NE had been thought as the stable during the interphase of cell cycle. However, recent studies have revealed that the NE can be damaged by various stresses such as mechanical stress and cellular senescence. These types of stresses are called NE stress. It has been proposed that NE stress is closely related to cellular dysfunctions such as genome instability and cell death. Here, we found that an endoplasmic reticulum (ER)-resident transmembrane transcription factor, OASIS, accumulates at damaged NE. Notably, the major components of nuclear lamina, Lamin proteins were depleted at the NE where OASIS accumulates. We previously demonstrated that OASIS is cleaved at the membrane domain in response to ER stress. In contrast, OASIS accumulates as the full-length form to damaged NE in response to NE stress. The accumulation to damaged NE is specific for OASIS among OASIS family members. Intriguingly, OASIS colocalizes with the components of linker of nucleoskeleton and cytoskeleton complexes, SUN2 and Nesprin-2 at the damaged NE. OASIS partially colocalizes with BAF, LEM domain proteins, and a component of ESCRT III, which are involved in the repair of ruptured NE. Furthermore, OASIS suppresses DNA damage induced by NE stress and restores nuclear deformation under NE stress conditions. Our findings reveal a novel NE stress response pathway mediated by OASIS.

Details

Language :
English
ISSN :
20587716
Volume :
7
Issue :
1
Database :
OpenAIRE
Journal :
Cell Death Discovery
Accession number :
edsair.doi.dedup.....c7c45019cccbef432b019e453c370264