Back to Search Start Over

Evaluation of natural aerosols in CRESCENDO Earth system models (ESMs): Mineral dust

Authors :
F. M. O'Connor
P. Le Sager
Tommi Bergman
Kenneth S. Carslaw
T. P. C. van Noije
Béatrice Marticorena
Christopher Dearden
Samuel Albani
Joseph M. Prospero
Cat Scott
Michael Schulz
Ramiro Checa-Garcia
Yves Balkanski
Anne Cozic
Dirk Jan Leo Oliviè
Pierre Nabat
Martine Michou
Checa-Garcia, R
Balkanski, Y
Albani, S
Bergman, T
Carslaw, K
Cozic, A
Dearden, C
Marticorena, B
Michou, M
Van Noije, T
Nabat, P
O'Connor, F
Olivie, D
Prospero, J
Le Sager, P
Schulz, M
Scott, C
Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583))
Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Paris (UP)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Department of Earth and Environmental Sciences [Milano]
Università degli Studi di Milano-Bicocca = University of Milano-Bicocca (UNIMIB)
Royal Netherlands Meteorological Institute (KNMI)
Institute for Climate and Atmospheric Science [Leeds] (ICAS)
School of Earth and Environment [Leeds] (SEE)
University of Leeds-University of Leeds
Calcul Scientifique (CALCULS)
Centre of Excellence for Modelling the Atmosphere and Climate (CEMAC)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Groupe de Météorologie de Grande Échelle et Climat (GMGEC)
Centre national de recherches météorologiques (CNRM)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
Met Office Hadley Centre for Climate Change (MOHC)
United Kingdom Met Office [Exeter]
Norwegian Meteorological Institute [Oslo] (MET)
University of Miami [Coral Gables]
ANR-19-CE01-0008,CLIMDO,Alteration des poussières minerales par les composés organiques volatiles d'interet climatique(2019)
European Project: 708119,H2020,H2020-MSCA-IF-2015,DUSC3(2016)
European Project: 641816,H2020,H2020-SC5-2014-two-stage,CRESCENDO(2015)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Università degli Studi di Milano-Bicocca [Milano] (UNIMIB)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
Source :
Atmospheric Chemistry and Physics, Vol 21, Pp 10295-10335 (2021), Atmospheric Chemistry and Physics, Atmospheric Chemistry and Physics, European Geosciences Union, 2021, 21 (13), pp.10295-10335. ⟨10.5194/acp-21-10295-2021⟩, Atmospheric Chemistry and Physics, 2021, 21 (13), pp.10295-10335. ⟨10.5194/acp-21-10295-2021⟩
Publication Year :
2021
Publisher :
Copernicus GmbH, 2021.

Abstract

This paper presents an analysis of the mineral dust aerosol modelled by five Earth system models (ESMs) within the project entitled Coordinated Research in Earth Systems and Climate: Experiments, kNowledge, Dissemination and Outreach (CRESCENDO). We quantify the global dust cycle described by each model in terms of global emissions, together with dry and wet deposition, reporting large differences in the ratio of dry over wet deposition across the models not directly correlated with the range of particle sizes emitted. The multi-model mean dust emissions with five ESMs is 2836 Tg yr−1 but with a large uncertainty due mainly to the difference in the maximum dust particle size emitted. The multi-model mean of the subset of four ESMs without particle diameters larger than 10 µ m is 1664 (σ=651) Tg yr−1. Total dust emissions in the simulations with identical nudged winds from reanalysis give us better consistency between models; i.e. the multi-model mean global emissions with three ESMs are 1613 (σ=278) Tg yr−1, but 1834 (σ=666) Tg yr−1 without nudged winds and the same models. Significant discrepancies in the globally averaged dust mass extinction efficiency explain why even models with relatively similar global dust load budgets can display strong differences in dust optical depth. The comparison against observations has been done in terms of dust optical depths based on MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products, showing global consistency in terms of preferential dust sources and transport across the Atlantic. The global localisation of source regions is consistent with MODIS, but we found regional and seasonal differences between models and observations when we quantified the cross-correlation of time series over dust-emitting regions. To faithfully compare local emissions between models we introduce a re-gridded normalisation method that can also be compared with satellite products derived from dust event frequencies. Dust total deposition is compared with an instrumental network to assess global and regional differences. We find that models agree with observations within a factor of 10 for data stations distant from dust sources, but the approximations of dust particle size distribution at emission contributed to a misrepresentation of the actual range of deposition values when instruments are close to dust-emitting regions. The observed dust surface concentrations also are reproduced to within a factor of 10. The comparison of total aerosol optical depth with AERONET (AErosol RObotic NETwork) stations where dust is dominant shows large differences between models, although with an increase in the inter-model consistency when the simulations are conducted with nudged winds. The increase in the model ensemble consistency also means better agreement with observations, which we have ascertained for dust total deposition, surface concentrations and optical depths (against both AERONET and MODIS retrievals). We introduce a method to ascertain the contributions per mode consistent with the multi-modal direct radiative effects, which we apply to study the direct radiative effects of a multi-modal representation of the dust particle size distribution that includes the largest particles.

Details

Language :
English
ISSN :
16807316 and 16807324
Database :
OpenAIRE
Journal :
Atmospheric Chemistry and Physics, Vol 21, Pp 10295-10335 (2021), Atmospheric Chemistry and Physics, Atmospheric Chemistry and Physics, European Geosciences Union, 2021, 21 (13), pp.10295-10335. ⟨10.5194/acp-21-10295-2021⟩, Atmospheric Chemistry and Physics, 2021, 21 (13), pp.10295-10335. ⟨10.5194/acp-21-10295-2021⟩
Accession number :
edsair.doi.dedup.....c7c69f56984e972e7dac8e7c129fcb31
Full Text :
https://doi.org/10.5194/acp-21-10295-2021⟩