Back to Search Start Over

An Improved Map-Matching Technique Based on the Fréchet Distance Approach for Pedestrian Navigation Services

Authors :
Yoonsik Bang
Jiyoung Kim
Kiyun Yu
Source :
Sensors, Vol 16, Iss 10, p 1768 (2016), Sensors; Volume 16; Issue 10; Pages: 1768, Sensors (Basel, Switzerland), SENSORS(16): 10
Publication Year :
2016
Publisher :
MDPI AG, 2016.

Abstract

Wearable and smartphone technology innovations have propelled the growth of Pedestrian Navigation Services (PNS). PNS need a map-matching process to project a user's locations onto maps. Many map-matching techniques have been developed for vehicle navigation services. These techniques are inappropriate for PNS because pedestrians move, stop, and turn in different ways compared to vehicles. In addition, the base map data for pedestrians are more complicated than for vehicles. This article proposes a new map-matching method for locating Global Positioning System (GPS) trajectories of pedestrians onto road network datasets. The theory underlying this approach is based on the Frechet distance, one of the measures of geometric similarity between two curves. The Frechet distance approach can provide reasonable matching results because two linear trajectories are parameterized with the time variable. Then we improved the method to be adaptive to the positional error of the GPS signal. We used an adaptation coefficient to adjust the search range for every input signal, based on the assumption of auto-correlation between consecutive GPS points. To reduce errors in matching, the reliability index was evaluated in real time for each match. To test the proposed map-matching method, we applied it to GPS trajectories of pedestrians and the road network data. We then assessed the performance by comparing the results with reference datasets. Our proposed method performed better with test data when compared to a conventional map-matching technique for vehicles.

Details

Language :
English
ISSN :
14248220
Volume :
16
Issue :
10
Database :
OpenAIRE
Journal :
Sensors
Accession number :
edsair.doi.dedup.....c7d43101a30b6e8f7725acdde925917c