Back to Search Start Over

Thrombospondin-1 Silencing Improves Lymphocyte Infiltration in Tumors and Response to Anti-PD-1 in Triple-Negative Breast Cancer

Authors :
Guillaume Labrousse
Julie Tenet
Hervé Prats
Justine Noujarède
Stéphanie Delmas
Bruno Ségui
Maud Chusseau
Thomas Farge
Elie Marcheteau
Florence Dalenc
Caroline Imbert
Florence Cabon
Camille Franchet
Céline Colacios
Michaël Pérès
Raphaëlle Duprez-Paumier
Source :
Cancers, Cancers, Vol 13, Iss 4059, p 4059 (2021), Volume 13, Issue 16
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Simple Summary Triple-negative breast cancer (TNBC) is associated with a poor prognosis, and the development of better therapeutic strategies is required. Herein, we investigated the role of the anti-angiogenic thrombospondin-1 (TSP1) in TNBC. TSP1 expression in tumor biopsies from TNBC patients was associated with a bad prognosis and a weak content of tumor-infiltrating lymphocytes (TILs). In the 4T1 mouse TNBC model, TSP1 knockdown reduced TGF-β activation and enhanced the content of TILs. Moreover, TSP1 knockdown decreased lung metastasis in syngeneic Balb/c immunocompetent mice but not in immunodeficient nude mice. Finally, TSP1 knockdown enhanced anti-PD-1 immunotherapy efficacy. Thus, targeting TSP1 may be considered as a putative therapeutic strategy in TNBC in combination with immunotherapy. Abstract Triple-negative breast cancer (TNBC) is notoriously aggressive with a high metastatic potential, and targeted therapies are lacking. Using transcriptomic and histologic analysis of TNBC samples, we found that a high expression of thrombospondin-1 (TSP1), a potent endogenous inhibitor of angiogenesis and an activator of latent transforming growth factor beta (TGF-β), is associated with (i) gene signatures of epithelial–mesenchymal transition and TGF-β signaling, (ii) metastasis and (iii) a reduced survival in TNBC patients. In contrast, in tumors expressing low levels of TSP1, gene signatures of interferon gamma (IFN-γ) signaling and lymphocyte activation were enriched. In TNBC biopsies, TSP1 expression inversely correlated with the CD8+ tumor-infiltrating lymphocytes (TILs) content. In the 4T1 metastatic mouse model of TNBC, TSP1 silencing did not affect primary tumor development but, strikingly, impaired metastasis in immunocompetent but not in immunodeficient nude mice. Moreover, TSP1 knockdown increased tumor vascularization and T lymphocyte infiltration and decreased TGF-β activation in immunocompetent mice. Noteworthy was the finding that TSP1 knockdown increased CD8+ TILs and their programmed cell death 1 (PD-1) expression and sensitized 4T1 tumors to anti-PD-1 therapy. TSP1 inhibition might thus represent an innovative targeted approach to impair TGF-β activation and breast cancer cell metastasis and improve lymphocyte infiltration in tumors, and immunotherapy efficacy in TNBC.

Details

ISSN :
20726694
Volume :
13
Database :
OpenAIRE
Journal :
Cancers
Accession number :
edsair.doi.dedup.....c7f8ba14f107123d6d4579aa96b25044