Back to Search Start Over

Generalized n-Dimensional Rigid Registration: Theory and Applications

Authors :
Jin Wu
Miaomiao Wang
Hassen Fourati
Hui Li
Yilong Zhu
Chengxi Zhang
Yi Jiang
Xiangcheng Hu
Ming Liu
Hong Kong University of Science and Technology (HKUST)
University of Western Ontario (UWO)
Dynamics and Control of Networks (DANCE)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-GIPSA Pôle Automatique et Diagnostic (GIPSA-PAD)
Grenoble Images Parole Signal Automatique (GIPSA-lab)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab)
Université Grenoble Alpes (UGA)
Jiangnan University
Harbin Institute of Technology (HIT)
City University of Hong Kong [Hong Kong] (CUHK)
Source :
IEEE Transactions on Cybernetics, IEEE Transactions on Cybernetics, 2023, 53 (2), pp.927-940. ⟨10.1109/tcyb.2022.3168938⟩
Publication Year :
2023
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2023.

Abstract

International audience; The generalized rigid registration problem in high-dimensional Euclidean spaces is studied. The loss function is minimized with an equivalent error formulation by the Cayley formula. The closed-form linear least-square solution to such a problem is derived which generates the registration covariances, i.e., uncertainty information of rotation and translation, providing quite accurate probabilistic descriptions. Simulation results indicate the correctness of the proposed method and also present its efficiency on computation-time consumption, compared with previous algorithms using singular value decomposition (SVD) and linear matrix inequality (LMI). The proposed scheme is then applied to an interpolation problem on the special Euclidean group SE(n) with covariance-preserving functionality. Finally, experiments on covariance-aided Lidar mapping show practical superiority in robotic navigation.

Details

ISSN :
21682275 and 21682267
Volume :
53
Database :
OpenAIRE
Journal :
IEEE Transactions on Cybernetics
Accession number :
edsair.doi.dedup.....c822546f10a83b9d489d9122386f8519