Back to Search Start Over

Determinants of oligosaccharide specificity of the carbohydrate-binding modules of AMP-activated protein kinase

Authors :
Michael D. W. Griffin
Michael A. Gorman
Alex Di Paolo
Ann Koay
Michael Bieri
David I. Stapleton
Jesse I. Mobbs
Paul R. Gooley
Emma J. Petrie
Michael W. Parker
Larissa Doughty
Source :
The Biochemical journal. 468(2)
Publication Year :
2015

Abstract

AMP-activated protein kinase (AMPK) is an αβγ heterotrimer that is important in regulating energy metabolism in all eukaryotes. The β-subunit exists in two isoforms (β1 and β2) and contains a carbohydrate-binding module (CBM) that interacts with glycogen. The two CBM isoforms (β1- and β2-CBM) are near identical in sequence and structure, yet show differences in carbohydrate-binding affinity. β2-CBM binds linear carbohydrates with 4-fold greater affinity than β1-CBM and binds single α1,6-branched carbohydrates up to 30-fold tighter. To understand these affinity differences, especially for branched carbohydrates, we determined the NMR solution structure of β2-CBM in complex with the single α1,6-branched carbohydrate glucosyl-β-cyclodextrin (gBCD) which supported the dynamic nature of the binding site, but resonance broadening prevented defining where the α1,6 branch bound. We therefore solved the X-ray crystal structures of β1- and β2-CBM, in complex with gBCD, to 1.7 and 2.0 Å (1 Å=0.1 nm) respectively. The additional threonine (Thr101) of β2-CBM expands the size of the surrounding loop, creating a pocket that accommodates the α1,6 branch. Hydrogen bonds are formed between the α1,6 branch and the backbone of Trp99 and Lys102 side chain of β2-CBM. In contrast, the α1,6 branch could not be observed in the β1-CBM structure, suggesting that it does not form a specific interaction. The orientation of gBCD bound to β1- and β2-CBM is supported by thermodynamic and kinetic data obtained through isothermal titration calorimetry (ITC) and NMR. These results suggest that AMPK containing the muscle-specific β2-isoform may have greater affinity for partially degraded glycogen.

Details

ISSN :
14708728
Volume :
468
Issue :
2
Database :
OpenAIRE
Journal :
The Biochemical journal
Accession number :
edsair.doi.dedup.....c88271c322d2cdafb935d17e792d4a2e