Back to Search Start Over

IL6-mediated HCoV-host interactome regulatory network and GO/Pathway enrichment analysis

Authors :
Alfredo Benso
Gianfranco Politano
Source :
PLoS Computational Biology, Vol 16, Iss 9, p e1008238 (2020), PLoS Computational Biology
Publication Year :
2020
Publisher :
Public Library of Science (PLoS), 2020.

Abstract

During these days of global emergency for the COVID-19 disease outbreak, there is an urgency to share reliable information able to help worldwide life scientists to get better insights and make sense of the large amount of data currently available. In this study we used the results presented in [1] to perform two different Systems Biology analyses on the HCoV-host interactome. In the first one, we reconstructed the interactome of the HCoV-host proteins, integrating it with highly reliable miRNA and drug interactions information. We then added the IL-6 gene, identified in recent publications [2] as heavily involved in the COVID-19 progression and, interestingly, we identified several interactions with the reconstructed interactome. In the second analysis, we performed a Gene Ontology and a Pathways enrichment analysis on the full set of the HCoV-host interactome proteins and on the ones belonging to a significantly dense cluster of interacting proteins identified in the first analysis. Results of the two analyses provide a compact but comprehensive glance on some of the current state-of-the-art regulations, GO, and pathways involved in the HCoV-host interactome, and that could support all scientists currently focusing on SARS-CoV-2 research.<br />Author summary In this paper we provide data about the HCoV-host interactome that can be extracted from the integration of several public available databases. We used the initial interactome published by Zhou et al. and analyzed if there are already known and validated interactions. We also looked into possible known miRNAs and drugs interactions to suggest possible biomarker candidates and treatment options. We also performed a Gene Ontology and a Pathways enrichment analysis to understand which are the pathways most likely involved in the proteins targeted by SARS-CoV-2. This paper not only provides a set of validated and reliable data that could help researchers in their fight against the COVID-19 disease outbreak, but also demonstrates how Systems Biology can be effectively used to quickly gather preliminary but still significant data without resorting only to expensive lab experiments.

Details

ISSN :
15537358
Volume :
16
Database :
OpenAIRE
Journal :
PLOS Computational Biology
Accession number :
edsair.doi.dedup.....c8ab47d5ca000ce3c989493cae4c2f6f