Back to Search
Start Over
Separation of singularities for the Bergman space and application to control theory
- Source :
- Journal de Mathématiques Pures et Appliquées, Journal de Mathématiques Pures et Appliquées, Elsevier, 2021, ⟨10.1016/j.matpur.2021.04.009⟩
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- In this paper, we solve a separation of singularities problem in the Bergman space. More precisely, we show that if $P\subset \mathbb{C}$ is a convex polygon which is the intersection of $n$ half planes, then the Bergman space on $P$ decomposes into the sum of the Bergman spaces on these half planes. The result applies to the characterization of the reachable space of the one-dimensional heat equation on a finite interval with boundary controls. We prove that this space is a Bergman space of the square which has the given interval as a diagonal. This gives an affirmative answer to a conjecture raised in [HKT20].<br />Comment: Journal de Math{\'e}matiques Pures et Appliqu{\'e}es, Elsevier, 2021
- Subjects :
- 0209 industrial biotechnology
Pure mathematics
General Mathematics
Diagonal
Boundary (topology)
02 engineering and technology
Space (mathematics)
Convex polygon
01 natural sciences
Square (algebra)
Mathematics - Analysis of PDEs
020901 industrial engineering & automation
Intersection
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Complex Variables (math.CV)
0101 mathematics
Mathematics - Optimization and Control
Mathematics
Conjecture
Mathematics - Complex Variables
Mathematics::Complex Variables
Applied Mathematics
010102 general mathematics
[MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV]
Optimization and Control (math.OC)
Bergman space
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Analysis of PDEs (math.AP)
Subjects
Details
- ISSN :
- 00217824
- Volume :
- 150
- Database :
- OpenAIRE
- Journal :
- Journal de Mathématiques Pures et Appliquées
- Accession number :
- edsair.doi.dedup.....c8c77a0ab393e5e90a6393cec09c2751
- Full Text :
- https://doi.org/10.1016/j.matpur.2021.04.009