Back to Search Start Over

Separation of singularities for the Bergman space and application to control theory

Authors :
Marcu-Antone Orsoni
Andreas Hartmann
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal de Mathématiques Pures et Appliquées, Journal de Mathématiques Pures et Appliquées, Elsevier, 2021, ⟨10.1016/j.matpur.2021.04.009⟩
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

In this paper, we solve a separation of singularities problem in the Bergman space. More precisely, we show that if $P\subset \mathbb{C}$ is a convex polygon which is the intersection of $n$ half planes, then the Bergman space on $P$ decomposes into the sum of the Bergman spaces on these half planes. The result applies to the characterization of the reachable space of the one-dimensional heat equation on a finite interval with boundary controls. We prove that this space is a Bergman space of the square which has the given interval as a diagonal. This gives an affirmative answer to a conjecture raised in [HKT20].<br />Comment: Journal de Math{\'e}matiques Pures et Appliqu{\'e}es, Elsevier, 2021

Details

ISSN :
00217824
Volume :
150
Database :
OpenAIRE
Journal :
Journal de Mathématiques Pures et Appliquées
Accession number :
edsair.doi.dedup.....c8c77a0ab393e5e90a6393cec09c2751
Full Text :
https://doi.org/10.1016/j.matpur.2021.04.009