Back to Search Start Over

Approximate and exact algorithms for the double-constrained two-dimensional guillotine cutting stock problem

Authors :
Rym M'Hallah
Mhand Hifi
Toufik Saadi
Modélisation, Information et Systèmes - UR UPJV 4290 (MIS)
Université de Picardie Jules Verne (UPJV)
Centre d'économie de la Sorbonne (CES)
Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS)
Department of Statistics and Operations Research
Kuwait University
Source :
Computational Optimization and Applications, Computational Optimization and Applications, Springer Verlag, 2009, 42 (2), pp.303-326. ⟨10.1007/s10589-007-9081-5⟩
Publication Year :
2009
Publisher :
HAL CCSD, 2009.

Abstract

ED EPS; International audience; In this paper, we propose approximate and exact algorithms for the double constrained two-dimensional guillotine cutting stock problem (DCTDC). The approximate algorithm is a two-stage procedure. The first stage attempts to produce a starting feasible solution to DCTDC by solving a single constrained two dimensional cutting problem, CDTC. If the solution to CTDC is not feasible to DCTDC, the second stage is used to eliminate non-feasibility. The exact algorithm is a branch-and-bound that uses efficient lower and upper bounding schemes. It starts with a lower bound reached by the approximate two-stage algorithm. At each internal node of the branching tree, a tailored upper bound is obtained by solving (relaxed) knapsack problems. To speed up the branch and bound, we implement, in addition to ordered data structures of lists, symmetry, duplicate, and non-feasibility detection strategies which fathom some unnecessary branches. We evaluate the performance of the algorithm on different problem instances which can become benchmark problems for the cutting and packing literature.

Details

Language :
English
ISSN :
09266003 and 15732894
Database :
OpenAIRE
Journal :
Computational Optimization and Applications, Computational Optimization and Applications, Springer Verlag, 2009, 42 (2), pp.303-326. ⟨10.1007/s10589-007-9081-5⟩
Accession number :
edsair.doi.dedup.....c8fbf8edc3458c953e3468f036aed632
Full Text :
https://doi.org/10.1007/s10589-007-9081-5⟩