Back to Search Start Over

Blockade of the NLRP3/Caspase-1 Axis Ameliorates Airway Neutrophilic Inflammation in a Toluene Diisocyanate-Induced Murine Asthma Model

Authors :
Shushan Wei
Rongchang Chen
Qiaoling He
Peikai Huang
Yiqin Luo
Shuyu Chen
Lihong Yao
Hongbing Guan
Qingling Zhang
Guoyou Peng
Jie Yan
Ailin Tao
Zehong Zou
Source :
Toxicological Sciences. 170:462-475
Publication Year :
2019
Publisher :
Oxford University Press (OUP), 2019.

Abstract

Multiple studies have addressed the vital role of Nod-like receptor protein 3(NLRP3)/caspase-1/IL-1β signaling in asthma. Yet, the role of NLRP3/caspase-1 in toluene diisocyanate (TDI)-induced asthma is still obscure. The aim of this study is to investigate the role of the NLRP3/caspase-1 axis in TDI-induced asthma. Using an established murine model of TDI-induced asthma as described previously, we gave the asthmatic mice a highly selective NLRP3 inhibitor, MCC950, as well as the specific caspase-1 inhibitors VX-765 and Ac-YVAD-CHO for therapeutic purposes. Airway resistance was measured and bronchoalveolar lavage fluid was analyzed. Lungs were examined by histology, immunohistochemistry, Western blotting, and flow cytometry. TDI exposure elevated the expression of NLRP3 and caspase-1 that was coupled with increased airway hyperresponsiveness (AHR), neutrophil-dominated cell infiltration, pronounced goblet cell metaplasia, extensive collagen deposition, and increased TH2/TH17 responses. Both VX-765 and Ac-YVAD-CHO effectively inhibited the activation of caspase-1 in TDI-asthmatic mice that was accompanied by dramatic attenuation of AHR, airway inflammation, and airway remodeling, in addition to a decreased TH2 response and lower levels of IL-18 and IL-1β. MCC950 blocked the activation of NLRP3 and downregulated protein expression of caspase-1, IL-1β, and IL-18 in TDI-exposed mice. Furthermore, MCC950 remarkably alleviated AHR, airway inflammation, airway remodeling, and significantly suppressed TH2/TH17 responses. These findings suggested that blockade of the NLRP3/caspase-1 axis effectively prevents the progression of TDI-induced asthma and could be used as therapeutic targets for asthmatics.

Details

ISSN :
10960929 and 10966080
Volume :
170
Database :
OpenAIRE
Journal :
Toxicological Sciences
Accession number :
edsair.doi.dedup.....c997f4423b25fb708ad517768b0c126d
Full Text :
https://doi.org/10.1093/toxsci/kfz099