Back to Search Start Over

The immobilization of recombinant human tropoelastin on metals using a plasma-activated coating to improve the biocompatibility of coronary stents

Authors :
Yongbai Yin
Marcela M.M. Bilek
Anna Waterhouse
Steven G. Wise
Anthony S. Weiss
Martin K.C. Ng
David R. McKenzie
Daniel V. Bax
Source :
Biomaterials. 31:8332-8340
Publication Year :
2010
Publisher :
Elsevier BV, 2010.

Abstract

Current endovascular stents have sub-optimal biocompatibility reducing their clinical efficacy. We previously demonstrated a plasma-activated coating (PAC) that covalently bound recombinant human tropoelastin (TE), a major regulator of vascular cells in vivo, to enhance endothelial cell interactions. We sought to develop this coating to enhance its mechanical properties and hemocompatibility for application onto coronary stents. The plasma vapor composition was altered by incorporating argon, nitrogen, hydrogen or oxygen to modulate coating properties. Coatings were characterized for 1) surface properties, 2) mechanical durability, 3) covalent protein binding, 4) endothelial cell interactions and 5) thrombogenicity. The N(2)/Ar PAC had optimal mechanical properties and did not delaminate after stent expansion. The N(2)/Ar PAC was mildly hydrophilic and covalently bound the highest proportion of TE, which enhanced endothelial cell proliferation. Acute thrombogenicity was assessed in a modified Chandler loop using human blood. Strikingly, the N(2)/Ar PAC alone reduced thrombus weight by ten-fold compared to 316L SS, a finding unaltered with immobilized TE. Serum soluble P-selectin was reduced on N(2)/Ar PAC and N(2)/Ar PAC + TE (p < 0.05), consistent with reduced platelet activation. We have demonstrated a coating for metal alloys with multifaceted biocompatibility that resists delamination and is non-thrombogenic, with implications for improving coronary stent efficacy.

Details

ISSN :
01429612
Volume :
31
Database :
OpenAIRE
Journal :
Biomaterials
Accession number :
edsair.doi.dedup.....c9e82082cb7309d8bbb86d30197c08d8