Back to Search Start Over

Genomic insights into diverse bacterial taxa that degrade extracellular DNA in marine sediments

Authors :
Thilo Hofmann
Casey R. J. Hubert
Michael Wagner
Amy Noel
Bela Hausmann
Srijak Bhatnagar
Claus Pelikan
Kenneth Wasmund
Andreas Richter
Thomas Rattei
Craig W. Herbold
Alexander Loy
Arno Schintlmeister
Margarete Watzka
Source :
Nature Microbiology, Wasmund, K, Pelikan, C, Schintlmeister, A, Wagner, M, Watzka, M, Richter, A, Bhatnagar, S, Noel, A, Hubert, C R J, Rattei, T, Hofmann, T, Hausmann, B, Herbold, C W & Loy, A 2021, ' Genomic insights into diverse bacterial taxa that degrade extracellular DNA in marine sediments ', Nature Microbiology, vol. 6, no. 7, pp. 885-898 . https://doi.org/10.1038/s41564-021-00917-9
Publication Year :
2021
Publisher :
Nature Publishing Group UK, 2021.

Abstract

Extracellular DNA is a major macromolecule in global element cycles, and is a particularly crucial phosphorus, nitrogen and carbon source for microorganisms in the seafloor. Nevertheless, the identities, ecophysiology and genetic features of DNA-foraging microorganisms in marine sediments are largely unknown. Here, we combined microcosm experiments, DNA stable isotope probing (SIP), single-cell SIP using nano-scale secondary isotope mass spectrometry (NanoSIMS) and genome-centric metagenomics to study microbial catabolism of DNA and its subcomponents in marine sediments. 13C-DNA added to sediment microcosms was largely degraded within 10 d and mineralized to 13CO2. SIP probing of DNA revealed diverse ‘Candidatus Izemoplasma’, Lutibacter, Shewanella and Fusibacteraceae incorporated DNA-derived 13C-carbon. NanoSIMS confirmed incorporation of 13C into individual bacterial cells of Fusibacteraceae sorted from microcosms. Genomes of the 13C-labelled taxa all encoded enzymatic repertoires for catabolism of DNA or subcomponents of DNA. Comparative genomics indicated that diverse ‘Candidatus Izemoplasmatales’ (former Tenericutes) are exceptional because they encode multiple (up to five) predicted extracellular nucleases and are probably specialized DNA-degraders. Analyses of additional sediment metagenomes revealed extracellular nuclease genes are prevalent among Bacteroidota at diverse sites. Together, our results reveal the identities and functional properties of microorganisms that may contribute to the key ecosystem function of degrading and recycling DNA in the seabed.<br />Using microcosms, stable isotope probing, genome-resolved metagenomics and NanoSIMS, the authors identify diverse bacterial taxa that can degrade extracellular DNA in marine sediments, including ‘Candidatus Izemoplasma’, which encode numerous extracellular nucleases.

Details

Language :
English
ISSN :
20585276
Volume :
6
Issue :
7
Database :
OpenAIRE
Journal :
Nature Microbiology
Accession number :
edsair.doi.dedup.....ca0142d28f02a0315fbcf31f68e98d0d
Full Text :
https://doi.org/10.1038/s41564-021-00917-9