Back to Search Start Over

MoveFormer: a Transformer-based model for step-selection animal movement modelling

Authors :
Ondřej Cífka
Simon Chamaillé-Jammes
Antoine Liutkus
Scientific Data Management (ZENITH)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Université de Montpellier (UM)
Centre d’Ecologie Fonctionnelle et Evolutive (CEFE)
Université Paul-Valéry - Montpellier 3 (UPVM)-École Pratique des Hautes Études (EPHE)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM)
Computations were performed using HPC/AI resources from GENCI-IDRIS (Grant AD011012019R1).
ANR-10-LABX-0020,NUMEV,Digital and Hardware Solutions and Modeling for the Environement and Life Sciences(2010)
ANR-16-IDEX-0006,MUSE,MUSE(2016)
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

The movement of animals is a central component of their behavioural strategies. Statistical tools for movement data analysis, however, have long been limited, and in particular, unable to account for past movement information except in a very simplified way. In this work, we propose MoveFormer, a new step-based model of movement capable of learning directly from full animal trajectories. While inspired by the classical step-selection framework and previous work on the quantification of uncertainty in movement predictions, MoveFormer also builds upon recent developments in deep learning, such as the Transformer architecture, allowing it to incorporate long temporal contexts. The model predicts an animal’s next movement step given its past movement history, including not only purely positional and temporal information, but also any available environmental covariates such as land cover or temperature. We apply our model to a diverse dataset made up of over 1550 trajectories from over 100 studies, and show how it can be used to gain insights about the importance of the provided context features, including the extent of past movement history. Our software, along with the trained model weights, is released as open source.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....ca3fc441a8447ac2c1f07d2c59481e21