Back to Search
Start Over
On totally projective QTAG-modules
- Source :
- Journal of Taibah University for Science, Vol 13, Iss 1, Pp 892-896 (2019)
- Publication Year :
- 2019
- Publisher :
- Taylor & Francis Group, 2019.
-
Abstract
- A module M over an associative ring R with unity is a QTAG-module if every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial modules. In this paper we investigate the class of QTAG-modules whose every separable module is a direct sum of uniserial modules; such modules are called ω-totally ω-projective. We discuss an interesting characterization of this class and we show that the class of $(\omega + n) $-totally $(\omega + n) $-projective modules contains the class of ω-totally ω-projective modules.
- Subjects :
- Pure mathematics
Ring (mathematics)
Mathematics::Commutative Algebra
Direct sum
$(\omega +n) $-projective module
Image (category theory)
Mathematics::Rings and Algebras
Homomorphic encryption
02 engineering and technology
021001 nanoscience & nanotechnology
separable submodules
01 natural sciences
010305 fluids & plasmas
qtag-modules
0103 physical sciences
Finitely-generated abelian group
Projective test
direct sum of uniserial modules
0210 nano-technology
lcsh:Science (General)
Associative property
Mathematics
lcsh:Q1-390
Subjects
Details
- Language :
- English
- ISSN :
- 16583655
- Volume :
- 13
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Journal of Taibah University for Science
- Accession number :
- edsair.doi.dedup.....ca5b778da0a6b975674636881db13a92