Back to Search Start Over

Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

Authors :
Olivier Peyrusse
Laurent Gremillet
Sadaoki Kojima
M. Ehret
Francisco Suzuki-Vidal
S. J. Rose
J. J. Honrubia
Vladimir Tikhonchuk
C. Mossé
Toma Toncian
Marco A. Gigosos
L. Giuffrida
P. Forestier-Colleoni
Joao Santos
Shohei Sakata
Dimitri Batani
Ph. Korneev
Nigel Woolsey
Annette Calisti
Farhat Beg
J.-R. Marquès
Mathieu Bailly-Grandvaux
Alexey Arefiev
Zhe Zhang
Shinsuke Fujioka
Alessio Morace
Sandrine Ferri
Gabriel Schaumann
Ricardo Florido
Markus Roth
King Fai Farley Law
Centre d'Etudes Lasers Intenses et Applications (CELIA)
Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
Physique des interactions ioniques et moléculaires (PIIM)
Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
Departamento de Optica y Fisica Aplicada
Universidad de Valladolid [Valladolid] (UVa)-Facultad de Ciencias
Direction des Applications Militaires (DAM)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Imperial College London
Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB)
Royal Society
Source :
Physics of Plasmas, Physics of Plasmas, 2018, 25 (5), ⟨10.1063/1.5018735⟩, Physics of Plasmas, American Institute of Physics, 2018, 25 (5), ⟨10.1063/1.5018735⟩, Physics of Plasmas 25(2018), 056705
Publication Year :
2017

Abstract

Powerful laser-plasma processes are explored to generate discharge currents of a few $100\,$kA in coil targets, yielding magnetostatic fields (B-fields) in excess of $0.5\,$kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, describing qualitatively the evolution of the discharge current, the major control parameter is the laser irradiance $I_{\mathrm{las}}\lambda_{\mathrm{las}}^2$. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and by proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at $60 \,\mathrm{\mu m}$ depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics.<br />Comment: 11 pages, 7 figures, invited APS

Details

Language :
English
ISSN :
10897674 and 1070664X
Database :
OpenAIRE
Journal :
Physics of Plasmas, Physics of Plasmas, 2018, 25 (5), ⟨10.1063/1.5018735⟩, Physics of Plasmas, American Institute of Physics, 2018, 25 (5), ⟨10.1063/1.5018735⟩, Physics of Plasmas 25(2018), 056705
Accession number :
edsair.doi.dedup.....ca753e39e40843ede607ba1eba87671f
Full Text :
https://doi.org/10.1063/1.5018735⟩