Back to Search Start Over

Dynamics and the Godbillon–Vey class of $C^1$ foliations

Authors :
Steven Hurder
Rémi Langevin
Department of Mathematics, Statistics and Computer Science [Chicago] ( UIC )
University of Illinois at Chicago ( UIC )
Institut de Mathématiques de Bourgogne [Dijon] ( IMB )
Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS )
Department of Mathematics, Statistics and Computer Science [Chicago] (UIC)
University of Illinois [Chicago] (UIC)
University of Illinois System-University of Illinois System
Institut de Mathématiques de Bourgogne [Dijon] (IMB)
Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB)
Source :
Journal of the Mathematical Society of Japan, Journal of the Mathematical Society of Japan, Maruzen Company Ltd, 2018, 70 (2), pp.423-462. 〈10.2969/jmsj/07027485〉, J. Math. Soc. Japan 70, no. 2 (2018), 423-462, Journal of the Mathematical Society of Japan, Maruzen Company Ltd, 2018, 70 (2), pp.423-462. ⟨10.2969/jmsj/07027485⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

Let F be a codimension-one, C^2-foliation on a manifold M without boundary. In this work we show that if the Godbillon--Vey class GV(F) \in H^3(M) is non-zero, then F has a hyperbolic resilient leaf. Our approach is based on methods of C^1-dynamical systems, and does not use the classification theory of C^2-foliations. We first prove that for a codimension--one C^1-foliation with non-trivial Godbillon measure, the set of infinitesimally expanding points E(F) has positive Lebesgue measure. We then prove that if E(F) has positive measure for a C^1-foliation F, then F must have a hyperbolic resilient leaf, and hence its geometric entropy must be positive. The proof of this uses a pseudogroup version of the Pliss Lemma. The theorem then follows, as a C^2-foliation with non-zero Godbillon-Vey class has non-trivial Godbillon measure. These results apply for both the case when M is compact, and when M is an open manifold.<br />Comment: This manuscript is a revision of the section 3 material from the previous version, and includes edits to the pictures in the text

Details

Language :
English
ISSN :
00255645
Database :
OpenAIRE
Journal :
Journal of the Mathematical Society of Japan, Journal of the Mathematical Society of Japan, Maruzen Company Ltd, 2018, 70 (2), pp.423-462. 〈10.2969/jmsj/07027485〉, J. Math. Soc. Japan 70, no. 2 (2018), 423-462, Journal of the Mathematical Society of Japan, Maruzen Company Ltd, 2018, 70 (2), pp.423-462. ⟨10.2969/jmsj/07027485⟩
Accession number :
edsair.doi.dedup.....cab86afeab13683f69241239b7f61d9d
Full Text :
https://doi.org/10.2969/jmsj/07027485〉