Back to Search Start Over

Frames Learned by Prime Convolution Layers in a Deep Learning Framework

Authors :
Emmanuel Trouvé
Abdourrahmane M. Atto
Rosie R. Bisset
Laboratoire d'Informatique, Systèmes, Traitement de l'Information et de la Connaissance (LISTIC)
Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])
Source :
IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Neural Networks and Learning Systems, IEEE, 2020, pp.1-9. ⟨10.1109/TNNLS.2020.3009059⟩
Publication Year :
2021
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2021.

Abstract

This brief addresses understandability of modern machine learning networks with respect to the statistical properties of their convolution layers. It proposes a set of tools for categorizing a convolution layer in terms of kernel property (meanlet, differencelet, or distrotlet) or kernel sequence property (frame spectra and intralayer correlation matrix). These tools are expected to be relevant for determining the generalization capabilities of a convolutional neural network. In particular, this brief highlights that the less frequency penalizing network among AlexNet, GoogleNet, RESNET101, and VGG19 is the more relevant one in terms of solutions for low-level ice-sheet feature enhancement.

Details

ISSN :
21622388 and 2162237X
Volume :
32
Database :
OpenAIRE
Journal :
IEEE Transactions on Neural Networks and Learning Systems
Accession number :
edsair.doi.dedup.....cae7d416dbc773e021b99ec15cf0818d
Full Text :
https://doi.org/10.1109/tnnls.2020.3009059