Back to Search Start Over

[18F]FDG PET radiomics to predict disease-free survival in cervical cancer: a multi-scanner/center study with external validation

Authors :
François Lucia
Philippe Robin
Ulrike Schick
Frédéric Kridelka
Johanne Hermesse
Caroline Reinhold
Dimitris Visvikis
Philippe Lambin
Patrick E. Meyer
Marjolein Decuypere
Roland Hustinx
Marta Ferreira
Mathieu Hatt
Claire Bernard
Ralph T.H. Leijenaar
Caroline Rousseau
Pierre Lovinfosse
GIGA [Université Liège]
Université de Liège
Centre Hospitalier Universitaire de Liège (CHU-Liège)
Nuclear Oncology (CRCINA-ÉQUIPE 13)
Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA)
Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)
CRLCC René Gauducheau
Centre Hospitalier Régional Universitaire de Brest (CHRU Brest)
Laboratoire de Traitement de l'Information Medicale (LaTIM)
Université de Brest (UBO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Régional Universitaire de Brest (CHRU Brest)-IMT Atlantique (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut Brestois Santé Agro Matière (IBSAM)
Université de Brest (UBO)
McGill University Health Center [Montreal] (MUHC)
Groupe d'Etude de la Thrombose de Bretagne Occidentale (GETBO)
Université de Brest (UBO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Brestois Santé Agro Matière (IBSAM)
Université de Brest (UBO)-Université de Brest (UBO)
Maastricht University Medical Centre (MUMC)
Maastricht University [Maastricht]
European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 766276
Bernardo, Elizabeth
Precision Medicine
RS: GROW - R3 - Innovative Cancer Diagnostics & Therapy
Beeldvorming
Source :
European Journal of Nuclear Medicine and Molecular Imaging, European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48 (11), pp.3432-3443. ⟨10.1007/s00259-021-05303-5⟩, European Journal of Nuclear Medicine and Molecular Imaging, 48(11), 3432-3443. Springer, Cham
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Purpose To test the performances of native and tumour to liver ratio (TLR) radiomic features extracted from pre-treatment 2-[18F] fluoro-2-deoxy-D-glucose ([18F]FDG) PET/CT and combined with machine learning (ML) for predicting cancer recurrence in patients with locally advanced cervical cancer (LACC). Methods One hundred fifty-eight patients with LACC from multiple centers were retrospectively included in the study. Tumours were segmented using the Fuzzy Local Adaptive Bayesian (FLAB) algorithm. Radiomic features were extracted from the tumours and from regions drawn over the normal liver. Cox proportional hazard model was used to test statistical significance of clinical and radiomic features. Fivefold cross validation was used to tune the number of features. Seven different feature selection methods and four classifiers were tested. The models with the selected features were trained using bootstrapping and tested in data from each scanner independently. Reproducibility of radiomics features, clinical data added value and effect of ComBat-based harmonisation were evaluated across scanners. Results After a median follow-up of 23 months, 29% of the patients recurred. No individual radiomic or clinical features were significantly associated with cancer recurrence. The best model was obtained using 10 TLR features combined with clinical information. The area under the curve (AUC), F1-score, precision and recall were respectively 0.78 (0.67–0.88), 0.49 (0.25–0.67), 0.42 (0.25–0.60) and 0.63 (0.20–0.80). ComBat did not improve the predictive performance of the best models. Both the TLR and the native models performance varied across scanners used in the test set. Conclusion [18F]FDG PET radiomic features combined with ML add relevant information to the standard clinical parameters in terms of LACC patient’s outcome but remain subject to variability across PET/CT devices.

Details

Language :
English
ISSN :
16197070 and 16197089
Database :
OpenAIRE
Journal :
European Journal of Nuclear Medicine and Molecular Imaging, European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48 (11), pp.3432-3443. ⟨10.1007/s00259-021-05303-5⟩, European Journal of Nuclear Medicine and Molecular Imaging, 48(11), 3432-3443. Springer, Cham
Accession number :
edsair.doi.dedup.....cae9d951ec70befd2111e27ced7fddc5