Back to Search Start Over

Decision optimization for face recognition based on an alternate correlation plane quantification metric

Authors :
Philippe Katz
Mohammad S. Alam
Ayman Alfalou
C. Brosseau
Laboratoire ISEN (L@BISEN)
Institut supérieur de l'électronique et du numérique (ISEN)-YNCREA OUEST (YO)
Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC)
École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Télécom Bretagne-Institut Brestois du Numérique et des Mathématiques (IBNM)
Université de Brest (UBO)-Université européenne de Bretagne - European University of Brittany (UEB)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)
Department of Electrical and Computer Engineering University of South Alabama, 6001 USA South Dr., Mobile, AL 36688-0002, USA
Department of Electrical and Computer Engineering
University of South Alabama-University of South Alabama
Alfalou, Ayman
Source :
Optics Letters, Optics Letters, Optical Society of America-OSA Publishing, 2012, 37 (9), pp.1562-1564
Publication Year :
2012
Publisher :
The Optical Society, 2012.

Abstract

International audience; We consider a new approach for enhancing the discrimination performance of the VanderLugt correlator. Instead of trying to optimize the correlation filter, or propose a new decision correlation peak detection criterion, we propose herein to denoise the correlation plane before applying the peak-to-correlation energy (PCE) criterion. For that purpose, we use a linear functional model to express a given correlation plane as a linear combination of the correlation peak, noise, and residual components. The correlation peak is modeled using an orthonormalized function and the singular value decomposition method. A set of training correlation planes is then selected to create the correlation noise components. Finally, an optimized correlation plane is reconstructed while discarding the noise components. Independently of the filter correlation used, this technique denoises the correlation plane by lowering the correlation noise magnitude in case of true correlation and decreases the false alarm rate when the target image does not belong to the desired class. Test results are presented, using a composite filter and a face recognition application, to verify the effectiveness of the proposed technique.

Details

ISSN :
15394794 and 01469592
Volume :
37
Database :
OpenAIRE
Journal :
Optics Letters
Accession number :
edsair.doi.dedup.....cb0b7e97f80926184da7cc4f17411800
Full Text :
https://doi.org/10.1364/ol.37.001562