Back to Search Start Over

Increased Na+/H+ antiport activity in the renal brush border membrane of SHR

Authors :
David B. N. Lee
David Sheikh-Hamad
Edward P. Nord
Gabriel A. Morduchowicz
Ok D. Jo
Norimoto Yanagawa
Source :
Kidney International. 36(4):576-581
Publication Year :
1989
Publisher :
Elsevier BV, 1989.

Abstract

Increased Na+/H+ antiport activity in the renal brush border membrane of SHR. Defect in renal salt excretion may play an important role in the pathogenesis of hypertension. We examined sodium (Na+) uptake by brush border membrane (BBM) vesicles of young (6 week old) spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) of the same age. SHR had lower urinary Na+ excretion (223.1 ± 9.3 vs. 266.3 ± 3.7 µEq/day/lOO g, N = 8, P < 0.01) and higher systolic blood pressure (98.9 ± 1.2 vs. 82.9 ± 1.8mm Hg, N = 8, P < 0.01) than WKY. BBM vesicle Na+ uptake, measured by rapid filtration technique, was higher in SHR when compared to WKY (1.44 ± 0.03 vs. 1.01 ± 0.06 nmol/mg/5 sec, N = 4, N < 0.01). This increase in Na+ influx was apparent only in the present of an outward-directed proton (H+) gradient and was abolished by 1mM amiloride. BBM permeability to H+ as assessed by acridine orange quenching was not different between SHR and WKY. Kinetic analyses of the amiloride-sensitive BBM Na+ uptake revealed a higher Vmax (2.13 ± 0.27 vs. 0.70 ± 0.30 nmol/mg/5 sec, N = 4, P < 0.01) and a higher km for Na+ (3.55 ± 0.32 vs. 1.23 ± 0.14mM, N = 4, P < 0.05) in SHR. These findings thus demonstrate an intrinsic derangement in BBM Na+ transport in young SHR which is characterized by increased Na+/H+ antiport activity. This alteration in antiport activity is not attributable to changes in membrane permeability to H+, and is characterized by higher Vmax and km. Similar reports of increased Na+/H+ antiport activity in other tissues of SHR suggest that a generalized membrane transport disorder may exist in this model of genetic hypertension.

Details

ISSN :
00852538
Volume :
36
Issue :
4
Database :
OpenAIRE
Journal :
Kidney International
Accession number :
edsair.doi.dedup.....cb73481d09feb9759133ec1534615058
Full Text :
https://doi.org/10.1038/ki.1989.233