Back to Search
Start Over
Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water
- Source :
- Nature Communications, Vol 12, Iss 1, Pp 1-11 (2021), Nature Communications
- Publication Year :
- 2021
- Publisher :
- Nature Portfolio, 2021.
-
Abstract
- Electrocatalytic alkyne semi-hydrogenation to alkenes with water as the hydrogen source using a low-cost noble-metal-free catalyst is highly desirable but challenging because of their over-hydrogenation to undesired alkanes. Here, we propose that an ideal catalyst should have the appropriate binding energy with active atomic hydrogen (H*) from water electrolysis and a weaker adsorption with an alkene, thus promoting alkyne semi-hydrogenation and avoiding over-hydrogenation. So, surface sulfur-doped and -adsorbed low-coordinated copper nanowire sponges are designedly synthesized via in situ electroreduction of copper sulfide and enable electrocatalytic alkyne semi-hydrogenation with over 99% selectivity using water as the hydrogen source, outperforming a copper counterpart without surface sulfur. Sulfur anion-hydrated cation (S2−-K+(H2O)n) networks between the surface adsorbed S2− and K+ in the KOH electrolyte boost the production of active H* from water electrolysis. And the trace doping of sulfur weakens the alkene adsorption, avoiding over-hydrogenation. Our catalyst also shows wide substrate scopes, up to 99% alkenes selectivity, good reducible groups compatibility, and easily synthesized deuterated alkenes, highlighting the promising potential of this method.<br />Highly selective electrocatalytic semi-hydrogenation of alkynes over a noble-metal-free catalyst is highly desirable. Here, authors synthesize sulfur-containing copper nanowire sponges for selective electrocatalytic alkyne semi-hydrogenation using water as the hydrogen source.
- Subjects :
- Science
Inorganic chemistry
Organic chemistry
General Physics and Astronomy
chemistry.chemical_element
Alkyne
010402 general chemistry
01 natural sciences
Article
General Biochemistry, Genetics and Molecular Biology
Catalysis
chemistry.chemical_compound
Adsorption
chemistry.chemical_classification
Multidisciplinary
Structural properties
Electrolysis of water
010405 organic chemistry
Alkene
General Chemistry
Sulfur
Copper
0104 chemical sciences
Copper sulfide
chemistry
Electrocatalysis
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 12
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Nature Communications
- Accession number :
- edsair.doi.dedup.....cb8c8ae7567f2dcf9bb99297a95c0461