Back to Search Start Over

Cellular and proteomic events associated with the localized formation of smut-gall during Zizania latifolia-Ustilago esculenta interaction

Authors :
Robinson C. Jose
Narayan Chandra Talukdar
Louis Bengyella
Pratap Jyoti Handique
Source :
Microbial pathogenesis. 126
Publication Year :
2018

Abstract

The perennial wild rice Zizania latifolia is confined in the swampy habitat and wetland of the Indo-Burma biodiversity hotspot of India and infection by the biotrophic fungus Ustilago esculenta is hallmarked by swellings that develop to form localized smut-gall at the topmost internodal region. The cellular and proteomic events involved in the non-systemic colonization of Z. latifolia by U. esculenta leading to smut-gall formation is poorly understood. Proteins were extracted from the smut-gall region at the topmost internodal region below the apical meristematic tissue from the infected and uninfected parts of Z. latifolia. By combining transmission electron microscopy (TEM) and fluorescent microscopy (FM), we showed that U. esculenta hyphal morphological transitions and movement occurred both intercellularly and intracellularly while sporulation occurred intracellularly in selective cells. Following proteome profiling using two dimensional SDS-PAGE at different phenological phases of smut-gall development and U. esculenta infection, differentially expressed proteins bands and their relative abundance were detected and subjected to liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis. Importantly, the fungus explores at least 7 metabolic pathways and 5 major biological processes to subdue the host defense and thrive successfully on Z. latifolia. The fungus U. esculenta produces proteases and energy acquisition proteins those enhance it's defensive and survival mode in the host. The identified differentially regulated proteins shed-light into why inflorescence is being replaced by bulbous smut-gall at late stages of the disease, as well as the development of resistance in some Z. latifolia plants against U. esculenta infection.

Details

ISSN :
10961208
Volume :
126
Database :
OpenAIRE
Journal :
Microbial pathogenesis
Accession number :
edsair.doi.dedup.....cbb524f31ae1cd1d226c2787568abdec