Back to Search
Start Over
Template secondary structure can increase the error frequency of the DNA polymerase from Thermus aquaticus
- Source :
- Gene. 164(1)
- Publication Year :
- 1995
-
Abstract
- Amplification of portions of the intergenic spacer between the katE gene and cryptic cel operon of Escherichia coli was accomplished by the polymerase chain reaction using the DNA polymerase from Thermus aquaticus. Nine different segments were amplified and cloned without error, but one 83-bp fragment was amplified with a high error rate such that 32 of 34 selected clones had three or more nucleotide changes from the expected sequence. The changes were all located in two 9-bp segments immediately adjacent to the 3'-ends of the two primers. Moving the end points of the primers to increase the spacing between them resulted in the isolation of significantly fewer error-containing products. It is proposed that stem-loop structures in the template immediately downstream from the primers interfere with an early stage of elongation and cause misincorporation. This is supported by the observation that destabilisation of one of the stem-loop structures reduced the frequency of errors.
- Subjects :
- DNA polymerase
Operon
Molecular Sequence Data
DNA-Directed DNA Polymerase
Polymerase Chain Reaction
law.invention
law
Genetics
Escherichia coli
Taq Polymerase
Thermus
Protein secondary structure
Gene
Polymerase chain reaction
Thermus aquaticus
biology
Base Sequence
Inverse polymerase chain reaction
General Medicine
biology.organism_classification
Stem-loop
Catalase
Molecular biology
biology.protein
Nucleic Acid Conformation
Artifacts
Subjects
Details
- ISSN :
- 03781119
- Volume :
- 164
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Gene
- Accession number :
- edsair.doi.dedup.....cca39d7e814584dddd110e97330282e5