Back to Search Start Over

Structure-activity modeling of a diverse set of androgen receptor ligands

Authors :
Devillers, James
Doucet, Jean-Pierre
Panaye, Annick
Marchand-Geneste, Nathalie
Porcher, Jean-Marc
Centre de Traitement de l'Informatique Scientifique
Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS (UMR_7086))
Université Paris Diderot - Paris 7 (UPD7)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Institut des Sciences Moléculaires (ISM)
Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Université Sciences et Technologies - Bordeaux 1-Université Montesquieu - Bordeaux 4-Institut de Chimie du CNRS (INC)
Institut National de l'Environnement Industriel et des Risques (INERIS)
Civs, Gestionnaire
DEVILLERS, James
Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)
Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Centre National de la Recherche Scientifique (CNRS)
Source :
4. International Symposium "Computational Methods in Toxicology and Pharmacology Integrating Internet Resources" (CMTPI 2007), 4. International Symposium "Computational Methods in Toxicology and Pharmacology Integrating Internet Resources" (CMTPI 2007), Sep 2007, Moscou, Russia, Endocrine Disruption Modeling ISBN: 9781420076356
Publication Year :
2007
Publisher :
HAL CCSD, 2007.

Abstract

Numerous chemicals released into the environment can interfere with normal, hormonally regulated biological processes to adversely affect development and/or reproductive function in wildlife and humans. Due to the ability of these chemicals to interfere with the endocrine systems, they have been labeled as endocrine disruptors (EDs). SARs and QSARs are powerful screening tools to detect potential EDs and to prioritize them for more intensive and costly evaluations based on in vitro and in vivo assays. In this context, androgen-receptor binding data (active/inactive) for a large set of about 200 structurally diverse chemicals, described by CODESSA descriptors encoding topological and physicochemical properties, were used for deriving structure-activity models. Different types of artificial neural networks and support vector machines with different kernel functions were tested as statistical tools. The performance of a classical discriminant analysis was also estimated. The comparison exercise was performed on the basis of the same learning and testing sets as well as from the same set of selected descriptors. The modeling performances as well as the technical advantages and limitations of each statistical method have been critically analyzed.

Details

Language :
English
ISBN :
978-1-4200-7635-6
ISBNs :
9781420076356
Database :
OpenAIRE
Journal :
4. International Symposium "Computational Methods in Toxicology and Pharmacology Integrating Internet Resources" (CMTPI 2007), 4. International Symposium "Computational Methods in Toxicology and Pharmacology Integrating Internet Resources" (CMTPI 2007), Sep 2007, Moscou, Russia, Endocrine Disruption Modeling ISBN: 9781420076356
Accession number :
edsair.doi.dedup.....ccabc8f34a07151b54abe68d99245b81