Back to Search
Start Over
A Genomic-Pathologic Annotated Risk Model to Predict Recurrence in Early-Stage Lung Adenocarcinoma
- Source :
- JAMA Surg
- Publication Year :
- 2020
-
Abstract
- IMPORTANCE: Recommendations for adjuvant therapy after surgical resection of lung adenocarcinoma (LUAD) are based solely on TNM classification but are agnostic to genomic and high-risk clinicopathologic factors. Creation of a prediction model that integrates tumor genomic and clinicopathologic factors may better identify patients at risk for recurrence. OBJECTIVE: To identify tumor genomic factors independently associated with recurrence, even in the presence of aggressive, high-risk clinicopathologic variables, in patients with completely resected stages I to III LUAD, and to develop a computational machine-learning prediction model (PRecur) to determine whether the integration of genomic and clinicopathologic features could better predict risk of recurrence, compared with the TNM system. DESIGN, SETTING, AND PARTICIPANTS: This prospective cohort study included 426 patients treated from January 1, 2008, to December 31, 2017, at a single large cancer center and selected in consecutive samples. Eligibility criteria included complete surgical resection of stages I to III LUAD, broad-panel next-generation sequencing data with matched clinicopathologic data, and no neoadjuvant therapy. External validation of the PRecur prediction model was performed using The Cancer Genome Atlas (TCGA). Data were analyzed from 2014 to 2018. MAIN OUTCOMES AND MEASURES: The study end point consisted of relapse-free survival (RFS), estimated using the Kaplan-Meier approach. Associations among clinicopathologic factors, genomic alterations, and RFS were established using Cox proportional hazards regression. The PRecur prediction model integrated genomic and clinicopathologic factors using gradient-boosting survival regression for risk group generation and prediction of RFS. A concordance probability estimate (CPE) was used to assess the predictive ability of the PRecur model. RESULTS: Of the 426 patients included in the analysis (286 women [67%]; median age at surgery, 69 [interquartile range, 62-75] years), 318 (75%) had stage I cancer. Association analysis showed that alterations in SMARCA4 (clinicopathologic-adjusted hazard ratio [HR], 2.44; 95% CI, 1.03-5.77; P = .042) and TP53 (clinicopathologic-adjusted HR, 1.73; 95% CI, 1.09-2.73; P = .02) and the fraction of genome altered (clinicopathologic-adjusted HR, 1.03; 95% CI, 1.10-1.04; P = .005) were independently associated with RFS. The PRecur prediction model outperformed the TNM-based model (CPE, 0.73 vs 0.61; difference, 0.12 [95% CI, 0.05-0.19]; P
- Subjects :
- Oncology
Male
medicine.medical_specialty
Lung Neoplasms
medicine.medical_treatment
Concordance
030230 surgery
Adenocarcinoma
Risk Assessment
03 medical and health sciences
0302 clinical medicine
Interquartile range
Predictive Value of Tests
Internal medicine
medicine
Adjuvant therapy
Humans
Prospective Studies
Prospective cohort study
Neoadjuvant therapy
Aged
Neoplasm Staging
Original Investigation
business.industry
Hazard ratio
High-Throughput Nucleotide Sequencing
Genomics
Middle Aged
medicine.disease
Clinical trial
030220 oncology & carcinogenesis
Surgery
Female
Neoplasm Recurrence, Local
business
Subjects
Details
- ISSN :
- 21686262
- Volume :
- 156
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- JAMA surgery
- Accession number :
- edsair.doi.dedup.....ccbc96d69e3e158ac5cefd7ebab1f5f3