Back to Search Start Over

A Genomic-Pathologic Annotated Risk Model to Predict Recurrence in Early-Stage Lung Adenocarcinoma

Authors :
Marc Ladanyi
William D. Travis
Matthew J. Bott
David Lyden
Yuan Liu
Axel Martin
Nikolaus Schultz
Kay See Tan
Prasad S. Adusumilli
Michael F. Berger
Gregory J Riely
Francisco Sanchez-Vega
Gaetano Rocco
David R. Jones
Whitney S. Brandt
Jamie E. Chaft
Marcin Imielinski
Bob T. Li
Daniela Molena
Ronglai Shen
Bernard J. Park
Ariana Adamski
David B. Solit
Marty W. Mayo
Natasha Rekhtman
Gregory D. Jones
Jian Zhou
Hira Rizvi
Source :
JAMA Surg
Publication Year :
2020

Abstract

IMPORTANCE: Recommendations for adjuvant therapy after surgical resection of lung adenocarcinoma (LUAD) are based solely on TNM classification but are agnostic to genomic and high-risk clinicopathologic factors. Creation of a prediction model that integrates tumor genomic and clinicopathologic factors may better identify patients at risk for recurrence. OBJECTIVE: To identify tumor genomic factors independently associated with recurrence, even in the presence of aggressive, high-risk clinicopathologic variables, in patients with completely resected stages I to III LUAD, and to develop a computational machine-learning prediction model (PRecur) to determine whether the integration of genomic and clinicopathologic features could better predict risk of recurrence, compared with the TNM system. DESIGN, SETTING, AND PARTICIPANTS: This prospective cohort study included 426 patients treated from January 1, 2008, to December 31, 2017, at a single large cancer center and selected in consecutive samples. Eligibility criteria included complete surgical resection of stages I to III LUAD, broad-panel next-generation sequencing data with matched clinicopathologic data, and no neoadjuvant therapy. External validation of the PRecur prediction model was performed using The Cancer Genome Atlas (TCGA). Data were analyzed from 2014 to 2018. MAIN OUTCOMES AND MEASURES: The study end point consisted of relapse-free survival (RFS), estimated using the Kaplan-Meier approach. Associations among clinicopathologic factors, genomic alterations, and RFS were established using Cox proportional hazards regression. The PRecur prediction model integrated genomic and clinicopathologic factors using gradient-boosting survival regression for risk group generation and prediction of RFS. A concordance probability estimate (CPE) was used to assess the predictive ability of the PRecur model. RESULTS: Of the 426 patients included in the analysis (286 women [67%]; median age at surgery, 69 [interquartile range, 62-75] years), 318 (75%) had stage I cancer. Association analysis showed that alterations in SMARCA4 (clinicopathologic-adjusted hazard ratio [HR], 2.44; 95% CI, 1.03-5.77; P = .042) and TP53 (clinicopathologic-adjusted HR, 1.73; 95% CI, 1.09-2.73; P = .02) and the fraction of genome altered (clinicopathologic-adjusted HR, 1.03; 95% CI, 1.10-1.04; P = .005) were independently associated with RFS. The PRecur prediction model outperformed the TNM-based model (CPE, 0.73 vs 0.61; difference, 0.12 [95% CI, 0.05-0.19]; P

Details

ISSN :
21686262
Volume :
156
Issue :
2
Database :
OpenAIRE
Journal :
JAMA surgery
Accession number :
edsair.doi.dedup.....ccbc96d69e3e158ac5cefd7ebab1f5f3