Back to Search
Start Over
Nitrogen and Phosphorus Resorption in Relation to Nutrition Limitation along the Chronosequence of Black Locust (Robinia pseudoacacia L.) Plantation
- Source :
- Forests, Vol 10, Iss 3, p 261 (2019), Forests, Volume 10, Issue 3
- Publication Year :
- 2019
- Publisher :
- MDPI AG, 2019.
-
Abstract
- Plant nitrogen (N) and phosphorus (P) resorption is an important strategy to conserve N and P in the face of nutrient limitation. However, little is known about the variation of N and P resorption efficiency (NRE and PRE) and their correlation with leaves and soil C:N:P stoichiometry in black locust forests (Robinia pseudoacacia L.) of different ages. In this study, we measured C, N, and P concentrations in soil, green leaves, and senesced leaves from black locust forests of different ages (i.e, 10-, 20-, 30-, 36-, and 45-year-old), and calculated the NRE, PRE, and C:N:P stoichiometry ratios. The NRE and PRE tended to increase and then decrease with stand age, ranging from 46.8% to 57.4% and from 37.4% to 58.5%, with averages of 52.61 and 51.89, respectively. The PRE:NRE decreased with increased stand ages. The C:P and N:P of soil and green leaves increased with stand ages, indicating the increase of P limitation. In the senesced leaves, C:P and N:P were lower than in green leaves and first increased and then decreased with stand age. The PRE was significantly negatively correlated with the C:P and N:P of soil and green leaves. The NRE was significantly correlated with the C concentration of green leaves, P of the senesced leaves, and C:N. Results suggested that the NRE and PRE responded differently to soil and plant nutrients in black locust forests of different ages. In addition, the black locust plantations would alter the conservation and use strategy of nutrients in the ecosystem through a plant-mediated pathway. Future studies should elucidate the central nutrient utilization strategy of black locust in response to a nutrient-poor environment and determine how it is involved in regulating nutrient resorption.
- Subjects :
- 0106 biological sciences
plant-soil feedback
Chronosequence
chemistry.chemical_element
010603 evolutionary biology
01 natural sciences
Nutrient
Animal science
Ecological stoichiometry
Ecosystem
Robinia pseudoacacia L
ecological stoichiometry
biology
Phosphorus
Robinia
Forestry
04 agricultural and veterinary sciences
lcsh:QK900-989
biology.organism_classification
Resorption
stand age
chemistry
040103 agronomy & agriculture
lcsh:Plant ecology
0401 agriculture, forestry, and fisheries
nutrition resorption
Locust
Subjects
Details
- Language :
- English
- ISSN :
- 19994907
- Volume :
- 10
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- Forests
- Accession number :
- edsair.doi.dedup.....cd1f2b1d24e4d7fc23e58e5f6a0a8797