Back to Search Start Over

Compound K inhibits priming and mitochondria-associated activating signals of NLRP3 inflammasome in renal tubulointerstitial lesions

Authors :
Jenn-Haung Lai
Hsu Wan-Han
Li-Heng Tuan
Ann Chen
Ching-Liang Chu
Shuk-Man Ka
Sheau-Long Lee
Yu-Juei Hsu
Cheng-Hsu Chen
Wei-Ting Wong
Lichieh Julie Chu
Kuo-Feng Hua
Yu-Ling Tsai
Hsiao-Wen Chiu
Yu-Chieh Lee
Ling-Jun Ho
Source :
Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 35(1)
Publication Year :
2018

Abstract

Background Renal tubulointerstitial lesions (TILs), a key pathological hallmark for chronic kidney disease to progress to end-stage renal disease, feature renal tubular atrophy, interstitial mononuclear leukocyte infiltration and fibrosis in the kidney. Our study tested the renoprotective and therapeutic effects of compound K (CK), as described in our US patent (US7932057B2), on renal TILs using a mouse unilateral ureteral obstruction (UUO) model. Methods Renal pathology was performed and renal draining lymph nodes were subjected to flow cytometry analysis. Mechanism-based experiments included the analysis of mitochondrial dysfunction, a model of tubular epithelial cells (TECs) under mechanically induced constant pressure (MICP) and tandem mass tags (TMT)-based proteomics analysis. Results Administration of CK ameliorated renal TILs by reducing urine levels of proinflammatory cytokines, and preventing mononuclear leukocyte infiltration and fibrosis in the kidney. The beneficial effects clearly correlated with its inhibition of: (i) NF-κB-associated priming and the mitochondria-associated activating signals of the NLRP3 inflammasome; (ii) STAT3 signalling, which in part prevents NLRP3 inflammasome activation; and (iii) the TGF-β-dependent Smad2/Smad3 fibrotic pathway, in renal tissues, renal TECs under MICP and/or activated macrophages, the latter as a major inflammatory player contributing to renal TILs. Meanwhile, TMT-based proteomics analysis revealed downregulated renal NLRP3 inflammasome activation-associated signalling pathways in CK-treated UUO mice. Conclusions The present study, for the first time, presents the potent renoprotective and therapeutic effects of CK on renal TILs by targeting the NLRP3 inflammasome and STAT3 signalling.

Details

ISSN :
14602385
Volume :
35
Issue :
1
Database :
OpenAIRE
Journal :
Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
Accession number :
edsair.doi.dedup.....cd3d066b872dba397c0c926a6148050e